Advertisement

Anti-Tumor Response and Heat Shock Proteins (HSP): A friend or Foe relationship?

  • Susana Fiorentino
  • Alfonso Barreto
  • Diana Castañeda
  • Claudia Cifuentes
Part of the Heat Shock Proteins book series (HESP, volume 1)

Abstract

Heat shock proteins (HSP), particularly inducible HSP72 have a role in generating an effective antitumoral response as immunogenic peptide carriers or as immunostimulants; inducing activation and maturation of dendritic cells (DC). Their basic function is as molecular chaperones, ATP dependant; increasing cell survival under any type of stress. Chaperone function is natural to protein family HSP70 structure, having a C-terminal domain that binds unfolded proteins and peptides and a N-terminal ATPase domain that controls peptide binding pocket opening and closing. Their immunostimulant role might antagonized with their protective activity against cell death induced by stress or cytotoxic agents. Inducible HSP70 is implicated in carrying out these two functions; purpose of the present review. Furthermore, is possible other members of HSP70 protein family to be implicated, but in different ways; by inducing immune response or as tumoral growth promoters inhibiting apoptosis. Comprehension of mechanisms that regulate both activities, is crucial in developing an effective antitumoral therapy through the search of substances that preserving their immunogenic potential do not increase tumor resistance to classical antitumoral therapy

Keywords

HSP70 immunostimulation exosomes apoptosis antitumoral therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altieri SL, Khan AN, Tomasi TB. (2004) Exosomes from plasmacytoma cells as a tumor vaccine. J Immunother. Jul-Aug;27(4):282–8.Google Scholar
  2. Andre F, Schartz NE, Chaput N, Flament C, Raposo G, Amigorena S, Angevin E, Zitvogel L. (2002a) Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine. Dec 19;20 Suppl 4:A28–31. Review.Google Scholar
  3. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L. (2002b) Malignant effusions and immunogenic tumour-derived exosomes. Lancet. Jul 27;360(9329):295–305.Google Scholar
  4. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK. (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. Apr;6(4):435–42.Google Scholar
  5. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. Apr 26;277(17):15028–34.Google Scholar
  6. Barreto A, Gonzalez JM, Kabingu E, Asea A, Fiorentino S. (2003) Stress-induced release of HSC70 from human tumors. Cell Immunol. Apr;222(2):97–104.Google Scholar
  7. Basler M, Youhnovski N, Van Den Broek M, Przybylski M, Groettrup M. (2004) Immunoproteasomes down-regulate presentation of a subdominant T cell epitope from lymphocytic choriomeningitis virus. J Immunol. Sep 15;173(6):3925–34.Google Scholar
  8. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. Nov;12(11):1539–46.Google Scholar
  9. Basu S, Binder RJ, Ramalingam T, Srivastava PK. (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. Mar;14(3):303–13.Google Scholar
  10. Bausero MA, Gastpar R, Multhoff G, Asea A. (2005) Alternative mechanism by which IFN-gamma enhances tumor recognition: active release of heat shock protein 72. J Immunol. Sep 1;175(5):2900–12.Google Scholar
  11. Beere, H. M., Wolf, B. B., Cain, K., Kuwana, T., Tailor, P., Morimoto, R. I., Cohen, G. and Green, D. R. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the apaf-1 apoptosome. Nat. Cell Biol. 2, 469–475.PubMedGoogle Scholar
  12. Beere HM. (2004) "The stress of dying": the role of heat shock proteins in the regulation of apoptosis. J Cell Sci. Jun 1;117(Pt 13):2641–51. Review.Google Scholar
  13. Beere HM. (2005) Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Invest. Oct;115(10):2633–9. Review.Google Scholar
  14. Belmokhtar CA, Hillion J, Dudognon C, Fiorentino S, Flexor M, Lanotte M, Segal-Bendirdjian E. (2003) Apoptosome-independent pathway for apoptosis. Biochemical analysis of APAF-1 defects and biological outcomes. J Biol Chem. Aug 8;278(32):29571–80.Google Scholar
  15. Binder RJ, Karimeddini D, Srivastava PK. (2001) Adjuvanticity of alpha 2-macroglobulin, an independent ligand for the heat shock protein receptor CD91. J Immunol. Apr 15;166(8):4968–72.Google Scholar
  16. Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK. (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med. Oct 20;186(8):1315–22.Google Scholar
  17. Bouillet, P. and Strasser, A. (2002). BH3-only proteins – evolutionarily conserved pro-apoptotic Bcl-2 family members essential for initiating programmed cell death. J. Cell Sci. 115, 1567–1574.PubMedGoogle Scholar
  18. Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M. (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem. Jun 13;278(24):21601–6.Google Scholar
  19. Buttiglieri S, Galetto A, Forno S, De Andrea M, Matela L. (2003) Influence of drug-induced apoptotic death on processing and presentation of tumor antigens by dendritic cells Int J Cancer Sep 10;106(4):516–20.Google Scholar
  20. Callahan, M. K., Chaillot, D., Jacquin, C., Clark, P. R., & Menoret, A. (2002). Differential acquisition of antigenic peptides by Hsp70 and Hsc70 under oxidative conditions. J Biol Chem 277, 33604–33609PubMedGoogle Scholar
  21. Caporale A, Cosenza UM, Vestri AR, Giuliani A, Costi U, Galati G, Cannaviello C, Franchi F. (2001) Has desmoplastic response extent protective action against tumor aggressiveness in gastric carcinoma? J Exp Clin Cancer Res. Mar;20(1):21–4.Google Scholar
  22. Chang, H. Y., Nishitoh, H., Yang, X., Ichijo, H. and Baltimore, D. (1998). Activation of apoptosis signal-regulating kinase (ASK-1) by the adapter protein daxx. Science 281, 1860–1863.PubMedGoogle Scholar
  23. Chang SH, Phelps PC, Berezesky IK, Ebersberger ML Jr, Trump BF. (2000) Studies on the mechanisms and kinetics of apoptosis induced by microinjection of cytochrome c in rat kidney tubule epithelial cells (NRK-52E). Am J Pathol. Feb;156(2):637–49.Google Scholar
  24. Charette, S. J., Lavoie, J. N., Lambert, H. and Landry, J. (2000) Inhibition of daxx-mediated apoptosis by heat shock protein 27. Mol. Cell. Biol. 20, 7602–7612.PubMedGoogle Scholar
  25. Chen Z, Moyana T, Saxena A, Warrington R, Jia Z, Xiang J. (2001) Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int J Cancer. Aug 15;93(4):539–48.Google Scholar
  26. Cheng, E., Wei, M., Weiler, S., Flavell, R., Mak, T., Lindsten, T. And Korsmeyer, S. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711.PubMedGoogle Scholar
  27. Chinnaiyan, A. M., O’Rourke, K., Tewari, M. and Dixit, V. M. (1995). FADD, a novel death domain containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512.PubMedGoogle Scholar
  28. Chinnaiyan, A. M., Tepper, C. G., Seldin, M. F., O’Rourke, K., Kischkel, F. C., Hellbardt, S., Krammer, P. H., Peter, M. E. and Dixit, V. M. (1996). FADD/MORT is a common mediator of CD95 (Fas/APO1)- and TNFreceptor- induced apoptosis. J. Biol. Chem. 271, 4961–4965.PubMedGoogle Scholar
  29. Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z. (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci. 2005 Aug 15;118(Pt 16):3631–8.Google Scholar
  30. Creagh EM, Sheehan D, Cotter TG. (2000) Heat shock proteins–modulators of apoptosis in tumour cells. Leukemia. Jul;14(7):1161–73. Review.Google Scholar
  31. Crittenden M, Gough M, Harrington K, Olivier K, Thompson J, Vile RG. (2003) Expression of inflammatory chemokines combined with local tumor destruction enhances tumor regression and long-term immunity. Cancer Res. Sep 1;63(17):5505–12.Google Scholar
  32. Csermely P. (2001) Chaperone overload is a possible contributor to ‘civilization diseases’. Trends Genet. Dec;17(12):701–4.Google Scholar
  33. Dai S, Wan T, Wang B, Zhou X, Xiu F, Chen T, Wu Y, Cao X. (2005) More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clin Cancer Res. Oct 15;11(20):7554–63.Google Scholar
  34. Daugaard M, Jaattela M, Rohde M. (2005) Hsp70-2 is required for tumor cell growth and survival. Cell Cycle. Jul;4(7):877–80.Google Scholar
  35. Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K., Antonsson, B. and Martinou, J. C. (1999) Bidinduced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144, 891–901PubMedGoogle Scholar
  36. Dressel, R., Elsner, L., Quentin, T., Walter, L. and Gunther, E. (2000) Heat shock protein 70 is able to prevent heat shock-induced resistance of target cells to CTL. J. Immunol. 164, 2362–2371.PubMedGoogle Scholar
  37. Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42.PubMedGoogle Scholar
  38. Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, Boccaccio C, Bonnerot C, Dhellin O, Movassagh M, Piperno S, Robert C, Serra V, Valente N, Le Pecq JB, Spatz A, Lantz O, Tursz T, Angevin E, Zitvogel L (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. Mar 2;3(1):10.Google Scholar
  39. Eskes, R., Antonsson, B., Osen-Sand, A., Montessuit, S., Richter, C., Sadoul, R., Mazzei, G., Nichols, A. and Martinou, J. C. (1998). Baxinduced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell Biol. 143, 217–224.PubMedGoogle Scholar
  40. Fiorentino S, Chopin M, Dastot H, Boissel N, Reboul M, Legres L, Janin A, Aplan P, Sigaux F, Regnault A. (2005) Disruption of T cell regulatory pathways is necessary for immunotherapeutic cure of T cell acute lymphoblastic leukemia in mice. Eur Cytokine Netw. Dec;16(4):300–8.Google Scholar
  41. Fujieda S, Noda I, Saito H, Hoshino T, Yagita M. (1995) Heat shock enhances the susceptibility of tumor cells to lysis by lymphokine-activated killer cells. Arch Otolaryngol Head Neck Surg. Sep;121(9):1009–14Google Scholar
  42. Gabai VL, Budagova KR, Sherman MY. (2005) Increased expression of the major heat shock protein Hsp72 in human prostate carcinoma cells is dispensable for their viability but confers resistance to a variety of anticancer agents. Oncogene. May 5;24(20):3328–38.Google Scholar
  43. Gabai, V. L., Mabuchi, K., Mosser, D. D. and Sherman, M. (2002) Y.Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol. Cell. Biol. 22 3415–3424.PubMedGoogle Scholar
  44. Galea-Lauri, J., Richardson, A. J., Latchman, D. S. and Katz, D. R. (1996). Increased heat shock protein 90 (hsp90) expression leads to increased apoptosis in the monoblastoid cell line U937 following induction with TNFalpha and cycloheximide, a possible role in immunopathology. J. Immunol. 157, 4109–4118.PubMedGoogle Scholar
  45. Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. Jun 15;65(12):5238–47.Google Scholar
  46. Gibbons NB, Watson RW, Coffey RN, Brady HP, Fitzpatrick JM. (2000) Heat-shock proteins inhibit induction of prostate cancer cell apoptosis. Prostate. Sep 15;45(1):58–65.Google Scholar
  47. Gotoh, T., Terada, K., Oyadomari, S. and Mori, M. (2004). hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Diff. 11, 390–402.Google Scholar
  48. Green, D. R. and Reed, J. C. (1998). Mitochondria and apoptosis. Science 281, 1309–1312. Willis, S., Day, C. L., Hinds, M. G. and Huang, D. C. S. (2003). The Bcl- 2-regulated apoptotic pathway. J. Cell Sci. 116, 4053–4056.Google Scholar
  49. Green, D. R. and Reed, J. C. (1998). Mitochondria and apoptosis. Science 281, 1309–1312.PubMedGoogle Scholar
  50. Gross, A., McDonnell, J. M. and Korsmeyer, S. J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911.PubMedGoogle Scholar
  51. Gross, C., Koelch, W., DeMaio, A., Arispe, N. and Multhoff, G. (2003). Cell surface-bound heat shock protein 70 (Hsp70) mediates perforinindependent apoptosis by specific binding and uptake of granzyme B. J. Biol. Chem. 278, 41173–41181.Google Scholar
  52. Gurbuxani S, Bruey JM, Fromentin A, Larmonier N, Parcellier A, Jaattela M, Martin F, Solary E, Garrido C. (2001) Selective depletion of inducible HSP70 enhances immunogenicity of rat colon cancer cells. Oncogene. Nov 8;20(51):7478–85.Google Scholar
  53. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. and Goeddel, D. V. (1996a). TNF-dependent recruitment of the protein kinase RIP to the TNF receptor 1 signaling complex. Immunity 4, 387–396.Google Scholar
  54. Hsu, H., Shu, H. B., Pan, M. G. and Goeddel, D. V. (1996b). TRADDTRAF2 and TRADD-FADD interactions define two distinct TNF receptor signal transduction pathways. Cell 84, 299–308.Google Scholar
  55. Hunter-Lavin C, Davies EL, Bacelar MM, Marshall MJ, Andrew SM, Williams JH. (2004) Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun. Nov 12;324(2):511–7.Google Scholar
  56. Ichinohe T, Ichimiya S, Kishi A, Tamura Y, Kondo N, Ueda G, Torigoe T, Yamaguchi A, Hiratsuka H, Hirai I, Kohama GI, Sato N. (2003) T-cell receptor variable gamma chain gene expression in the interaction between rat gammadelta-type T cells and heat-shock protein 70-like molecule. Microbiol Immunol.;47(5):351–7.PubMedGoogle Scholar
  57. Jaattela, M., Wissing, D., Bauer, P. A. and Li, G. C. (1992) Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J. 11, 3507–3512.PubMedGoogle Scholar
  58. Jaattela, M. and Wissing, D. (1993) Heat-shock proteins protect cells from monocyte cytotoxicity, possible mechanism of self-protection. J. Exp. Med. 177, 231–236.PubMedGoogle Scholar
  59. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. Jul 5;262(19):9412–20.Google Scholar
  60. Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, Mi Z, Watkins SC, Gambotto A, Robbins PD. (2005) Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol. May 15;174(10):6440–8.Google Scholar
  61. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. and Newmeyer, D. D. (1997). The release of cytochrome c from mitochondria, a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1326.PubMedGoogle Scholar
  62. Kokhaei P, Choudhury A, Mahdian R, Lundin J, Moshfegh A, Osterborg A, Mellstedt H. (2004) Apoptotic tumor cells are superior to tumor cell lysate, and tumor cell RNA in induction of autologous T cell response in B-CLL. Leukemia. Nov;18(11):1810–5.Google Scholar
  63. Kovalchin Phd JT, Wang Md Phd R, Wagh Md MS, Azoulay Bs J, Sanders Md M, Chandawarkar RY. (2006) In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair Regen. Mar-Apr;14(2):129–37.Google Scholar
  64. Lancaster GI, Febbraio MA. (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem. Jun 17;280(24):23349–55.Google Scholar
  65. Li, H., Zhu, H., Xu, C. J. and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501.PubMedGoogle Scholar
  66. Li, C. Y., Lee, J. S., Ko, Y. G., Kim, J. I. and Seo, J. S. (2000). Hsp70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J. Biol. Chem. 275, 25665–25671.PubMedGoogle Scholar
  67. Li, L., Luo, X. and Wang, X. (2001). Endonuclease G is an apoptotic Dnase when released from mitochondria. Nature 412, 95–99.PubMedGoogle Scholar
  68. Liossis, S. N., Ding, X. Z., Kiang, J. G. and Tsokos, G. C. (1997). Overexpression of the heat shock protein 70 enhances the TCR/CD3- and Fas/Apo-1/CD95-mediated apoptotic cell death in Jurkat T cells. J. Immunol. 56, 68–75Google Scholar
  69. Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, Kappes JC, Barnes S, Kimberly RP, Grizzle WE, Zhang HG. (2006) Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol. Feb 1;176(3):1375–85.Google Scholar
  70. Liu, Q. L., Kishi, H., Ohtsuka, K. and Muraguchi, A. (2003). Heat shock protein 70 binds caspase-activated DNase and enhances its activity in TCRstimulated T cells. Blood 102, 1788–1796.PubMedGoogle Scholar
  71. Locksley, R. M., Killeen, N. and Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies, integrating mammalian biology. Cell 104, 487–501.PubMedGoogle Scholar
  72. Loukissa A, Cardozo C, Altschuller-Felberg C, Nelson JE. (2000) Control of LMP7 expression in human endothelial cells by cytokines regulating cellular and humoral immunity.Cytokine. Sep;12(9):1326–30.Google Scholar
  73. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490.PubMedGoogle Scholar
  74. MacFarlane, M., Ahmad, M., Srinivasula, S. M., Fernandes-Alnemri, T., Cohen, G. M. and Alnemri, E. S. (1997). Identification and cloning of two novel receptors for the cytotoxic ligand TRAIL. J. Biol. Chem. 272, 25417–25420.PubMedGoogle Scholar
  75. Mehlen, P., Mehlen, A., Guillet, D., Preville, X. and Arrigo, A. P. (1995a). Tumor necrosis factor-αzinduces changes in the phosphorylation, cellularlocalization, and oligomerization of human hsp27, a stress protein that confers cellular resistance to this cytokine. J. Cell. Biochem. 58, 248–259.Google Scholar
  76. Mehlen, P., Preville, X., Chareyron, P., Briolay, J., Klemenz, R. and Arrigo, A. P. (1995b). Constitutive expression of human hsp27, drosophila hsp27, or human αB-crystallin confers resistance to TNF-α and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J. Immunol. 154, 363–374Google Scholar
  77. Mehlen, P., Schulze-Osthoff, K. and Arrigo, A. P. (1996b). Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J. Biol. Chem. 271, 16510–16514.Google Scholar
  78. Micheau, O. and Tschopp, J. (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 148–150.Google Scholar
  79. Miyazaki T, Kato H, Kimura H, Inose T, Faried A, Sohda M, Nakajima M, Fukai Y, Masuda N, Manda R, Fukuchi M, Tsukada K, Kuwano H (2005) Evaluation of tumor malignancy in esophageal squamous cell carcinoma using different characteristic factors. Anticancer Res. Nov-Dec;25(6B):4005–11.Google Scholar
  80. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, Hsu DH, Le Pecq JB, Lyerly HK. (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. Feb 21;3(1):9.Google Scholar
  81. Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R. (1997) Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol. May 1;158(9):4341–50.Google Scholar
  82. Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J. (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol. Nov;27(11):1627–36.Google Scholar
  83. Nguyen DG, Booth A, Gould SJ, Hildreth JE (2003) Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J Biol Chem. Dec 26;278(52):52347–54.Google Scholar
  84. Njemini R, Demanet C, Mets T. (2004) Inflammatory status as an important determinant of heat shock protein 70 serum concentrations during aging. Biogerontology;5(1):31–8.PubMedGoogle Scholar
  85. Njemini R, Lambert M, Demanet C, Mets T. (2003) Elevated serum heat-shock protein 70 levels in patients with acute infection: use of an optimized enzyme-linked immunosorbent assay. Scand J Immunol. Dec;58(6):664–9.Google Scholar
  86. Nollen, E. A., Brunsting, J. F., Song, J., Kampinga, H. H., & Morimoto, R. I. (2000). BAG1 functions in vivo as a negative regulator of HSP70 chaperone activity. Molecular and Cellular Biology, 20, 1083–1088.PubMedGoogle Scholar
  87. Ozoren, N. and El-Deiry, W. (2003). Heat shock protects HCT116 and H460 cells from TRAIL-induced apoptosis. Exp. Cell Res. 281, 175–181Google Scholar
  88. Pan, G., O’Rourke, K., Chinnaiyan, A. M., Gentz, R., Ebner, R. and Dixit, V. M. (1997). The receptor for the cytotoxic ligand TRAIL. Science 276, 111–113.PubMedGoogle Scholar
  89. Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantome A, Plenchette S, Khochbin S, Solary E, Garrido C. (2003) HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol. Aug;23(16):5790–802.Google Scholar
  90. Park, H. S., Cho, S. G., Kim, C. K., Hwang, H. S., Noh, K. T., Kim, M. S., Huh, S. H., Kim, M. J., Ryoo, K., Kim, E. K. et al. (2002). Heat shock protein Hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol. Cell. Biol. 22, 7721–7730.PubMedGoogle Scholar
  91. Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC. (2002) Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma. Apr;52(4):611–7Google Scholar
  92. Quijano SM, Saavedra C, Bravo MM, Fiorentino S, Orozco O. (2003) Expression of heat shock proteins HSP72 and HSP73 in Colombian patients with Hodgkin lymphoma positive and negative for Epstein Barr virus. Rev Med Chil. Dec;131(12):1375–81.Google Scholar
  93. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ. (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med. Mar 1;183(3):1161–72.Google Scholar
  94. Rodriguez F, Harkins S, Slifka MK, Whitton JL. (2002) Immunodominance in virus-induced CD8(+) T-cell responses is dramatically modified by DNA immunization and is regulated by gamma interferon. J Virol. May;76(9):4251–9.Google Scholar
  95. Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jaattela M. (2005) Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev. Mar 1;19(5):570–82,Google Scholar
  96. Ruchalski K, Mao H, Li Z, Wang Z, Gillers S, Wang Y, Mosser DD, Gabai V, Schwartz JH, Borkan SC. (2006) Distinct hsp70 domains mediate apoptosis-inducing factor release and nuclear accumulation. J Biol Chem. Mar 24;281(12):7873–80Google Scholar
  97. Saleh, A., Srinivasula, S. M., Balkir, L., Robbins, P. D. and Alnemri, E. S. (2000) Negative regulation of the apaf-1 apoptosome by Hsp70. Nat. Cell Biol. 2, 476–483.PubMedGoogle Scholar
  98. Schneider, P., Thome, M., Burns, K., Bodmer, J. L., Hofman, K., Kataoka, T., Holler, N. and Tschopp, J. (1997). Trail receptors 1 (DR4) and (DR5) signal FADD-dependent apoptosis and activate NF-κB. Immunity 7, 831–836PubMedGoogle Scholar
  99. Screaton, G. and Xu, X. N. (2000). T cell life and TNFreceptor family members. Curr. Opin. Immunol. 11, 277–285.Google Scholar
  100. Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier G, Boudaly S, Mecheri S. (2003) Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol. Mar 15;170(6):3037–45.Google Scholar
  101. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell. May 3;109(3):335–46.Google Scholar
  102. Somersan S, Larsson M, Fonteneau JF, Basu S, Srivastava P, Bhardwaj N. 2001) Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol. Nov 1;167(9):4844–52.Google Scholar
  103. Sreedhar AM, Csermely P. H. (2004) Heat shock proteins in the regulation of the apoptosis: New strategies in tumor therapy A compressive review. Pharmacology and therapeutics 101 227–257PubMedGoogle Scholar
  104. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. and Alnemri, E. S. (1998). Autoactivation of procaspase-9 by Apaf-1 mediated oligomerization. Mol. Cell 7, 949–957.Google Scholar
  105. Srivastava PK. (1994) Heat shock proteins in immune response to cancer: the Fourth Paradigm. Experientia. Nov 30;50(11–12):1054–60. Review.Google Scholar
  106. Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD. (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem. Nov 18;280(46):38729–39. Epub 2005 Sep 19.Google Scholar
  107. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M. et al. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446.PubMedGoogle Scholar
  108. Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K. and Takahashi, R. (2001). A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613- 621.PubMedGoogle Scholar
  109. Takayama S, Krajewski S, Krajewska M, Kitada S, Zapata JM, Kochel K, Knee D, Scudiero D, Tudor G, Miller GJ, Miyashita T, Yamada M, Reed JC. (1998) Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res. Jul 15;58(14):3116–31.Google Scholar
  110. Tamura Y, Tsuboi N, Sato N, Kikuchi K (1993) 70 kDa heat shock cognate protein is a transformation-associated antigen and a possible target for the host’s anti-tumor immunity. J Immunol. Nov 15;151(10):5516–24.Google Scholar
  111. Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S. (1999) Molecular characterization of dendritic cell-derived exosomes Selective accumulation of the heat shock protein hsc73. J Cell Biol. Nov 1;147(3):599–610.Google Scholar
  112. Thery C, Zitvogel L, Amigorena S. (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol. Aug;2(8):569–79.Google Scholar
  113. Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S. (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol. Dec;3(12):1156–62.Google Scholar
  114. Todryk S, Melcher AA, Hardwick N, Linardakis E, Bateman A, Colombo MP, Stoppacciaro A, Vile RG. (1999) Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol. Aug 1;163(3):1398–408.Google Scholar
  115. Udono, H., P. K. Srivastava. (1994) Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J. Immunol).Google Scholar
  116. Van Niel G, Mallegol J, Bevilacqua C, Candalh C, Brugiere S, Tomaskovic-Crook E, Heath JK, Cerf-Bensussan N, Heyman M. (2003) Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut. Dec;52(12):1690–7.Google Scholar
  117. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J. and Vaux, D. L. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53.PubMedGoogle Scholar
  118. Verhagen, AM, Ekert, PG, Pakusch, M, Silke, J, Connolly, LM, Reid, GE, Moritz, RL, Simpson, RJ and Vaux, DL (2000) "Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins." Cell 102(1): 43–53. 2000.Google Scholar
  119. Verhagen, AM, Silke, J, Ekert, PG, Pakusch, M, Kaufmann, H, Connolly, LM, Day, CL, Tikoo, A, Burke, R, Wrobel, C, Moritz, RL, Simpson, RJ and Vaux, DL (2002). "HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins." J Biol Chem 277(1): 445–54.PubMedGoogle Scholar
  120. Vieira, H., Boya, P., Cohen, I., Hamel, C., Haouzi, D., Druillenec, S., Belzacq, A., Brenner, C., Roques, B. and Kroemer, G. (2002) Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). Oncogene 21, 1963–1977.PubMedGoogle Scholar
  121. Walczak, H., Degli-Esposti, M. A., Johnson, R. S., Smolak, P. J., Waugh, J. Y., Boiani, N., Timour, M. S., Gerhart, M. J., Schooley, K. A., Smith, C. A. et al. (1997). TRAIL-R2, a novel apoptosis-mediating receptor for TRAIL. EMBO J. 16, 5386–5397.PubMedGoogle Scholar
  122. Wang L, Guo Y, Huang WJ, Ke X, Poyet JL, Manji GA, Merriam S, Glucksmann MA, DiStefano PS, Alnemri ES, Bertin J. (2001) Card10 is a novel caspase recruitment domain/membrane-associated guanylate kinase family member that interacts with BCL10 and activates NF-kappa B. J Biol Chem. Jun 15;276(24):21405–9.Google Scholar
  123. Willis S, Day CL, Hinds MG, Huang DC. (2003) The Bcl-2-regulated apoptotic pathway. J Cell Sci. Oct 15;116(Pt 20):4053–6. Review.Google Scholar
  124. Wolf, B. and Green, D. R. (1999). Suicidal tendencies, apoptotic cell death by caspase family proteinases. J. Biol. Chem. 274, 20049–20052.PubMedGoogle Scholar
  125. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L. (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. Mar;7(3):297–303.Google Scholar
  126. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P. and Wang, X. (1997a) Prevention of apoptosis by Bcl-2, release of cytochrome c from mitochondria blocked. Science 275, 1129–1132.Google Scholar
  127. Yang, X., Khosravi-Far, R., Chang, H. R. and Baltimore, D. (1997b) Daxx, a novel fas-binding protein that activates JNK and apoptosis. Cell 89, 1066–1076.Google Scholar
  128. Zheng H, Li Z. (2004) Cutting edge: cross-presentation of cell-associated antigens to MHC class I molecule is regulated by a major transcription factor for heat shock proteins. J Immunol. Nov 15;173(10):5929–33.Google Scholar
  129. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S. (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. May;4(5):594–600.Google Scholar
  130. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413.PubMedGoogle Scholar
  131. Zou, H., Li, Y., Liu, X. and Wang, X. (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556.PubMedGoogle Scholar
  132. Zylicz M, King FW, Wawrzynow A. (2001) Hsp70 interactions with the tumour suppressor protein, p53,. EMBO J. Sep 3;20(17):4634–8.Sep 3;20(17):4634–8.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Susana Fiorentino
    • 1
  • Alfonso Barreto
    • 1
  • Diana Castañeda
    • 1
  • Claudia Cifuentes
    • 1
  1. 1.Grupo de Inmunobiologia y Biologia Celular, Facultad de CienciasPontificia Universidad JaverianaBogotáColombia

Personalised recommendations