Recent Advances in Molecular Breeding of Cassava For Improved Drought Stress Tolerance

  • Tim L. Setter
  • Martin A. Fregene

Abstract

Cassava is an important tropical starchy root crop that is used extensively in drought prone tropical regions. It responds to water deficit with a dehydration avoidance and growth arrest syndrome. Carbohydrate is supplied from stems via remobilization. It is very limited in its use of osmotic adjustment, compatible solute synthesis, dehydrin accumulation and other tolerance mechanisms for low water potential. Given the difficulties of conventional breeding of cassava due to its long breeding cycle, heterozygousity, and difficulties in producing seed, an important recent development is the use of molecular markers and marker assisted selection (MAS). MAS is also contributing to the introgression of traits from wild relatives

Keywords

leaf retention marker assisted selection storage root drought water deficit stomatal conductance leaf growth stem carbohydrate remobilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alves, A. A. C. and Setter, T. L., 2000, Response of cassava to water deficit: Leaf area growth and abscisic acid, Crop Science 40:131–137.CrossRefGoogle Scholar
  2. Alves, A. A. C. and Setter, T. L., 2004a, Abscisic acid accumulation and osmotic adjustment in cassava under water deficit, Environmental and Experimental Botany 51:259–271.CrossRefGoogle Scholar
  3. Alves, A. A. C. and Setter, T. L., 2004b, Response of cassava leaf area expansion to water deficit: Cell proliferation, cell expansion and delayed development, Annals of Botany 94:605–613.CrossRefGoogle Scholar
  4. Angelov, M. N., Sun, J., Byrd, G. T., Brown, R. H. and Black, C. C., 1993, Novel characteristics of cassava, Manihot esculenta Crantz, a reputed C-3-C-4 intermediate photosynthesis species, Photosynthesis Research 38:61–72.CrossRefGoogle Scholar
  5. Baker, G. R., Fukai, S. and Wilson, G. L., 1989, The response of cassava to water deficits at various stages of growth in the subtropics, Australian Journal of Agricultural Research 40:517–528.CrossRefGoogle Scholar
  6. Calatayud, P. A., Llovera, E., Bois, J. F. and Lamaze, T., 2000, Photosynthesis in drought-adapted cassava, Photosynthetica 38:97–104.CrossRefGoogle Scholar
  7. Calatayud, P. A., Polania, M. A., Seligmann, C. D. and Bellotti, A. C., 2002, Influence of water-stressed cassava on Phenacoccus herreni and three associated parasitoids, Entomologia Experimentalis et Applicata 102:163–175.CrossRefGoogle Scholar
  8. Ceballos, H., Iglesias, C. A., Perez, J. C. and Dixon, A. G. O., 2004, Cassava breeding: opportunities and challenges, Plant Molecular Biology 56:503–516.PubMedCrossRefGoogle Scholar
  9. Cock, J. H., Porto, M. C. M. and El Sharkawy, M. A., 1985, Water use efficiency of cassava Manihot esculenta 3. Influence of air humidity and water stress on gas exchange of field grown cassava, Crop Science 25:265–272.CrossRefGoogle Scholar
  10. Connor, D. J. and Cock, J. H., 1981, Response of cassava to water shortage 2. Canopy dynamics, Field Crops Research 4:285–296.CrossRefGoogle Scholar
  11. Duque, L. O. and Setter, T. L., 2005, In Interdrought II, The 2nd International Conference on Integrated Approaches to Sustain and Improve Plant Production Under Drought Stress. Rome, Italy, September 24 to 28, 2005, Avenue media, Bolgna, Italy, pp. L 5.09.Google Scholar
  12. El Sharkawy, M. A. and Cock, J. H., 1984, Water use efficiency of cassava Manihot esculenta 1. Effects of air humidity and water stress on stomatal conductance and gas exchange, Crop Science 24:497–502.CrossRefGoogle Scholar
  13. El Sharkawy, M. A. and Cock, J. H., 1990, Photosynthesis of cassava Manihot esculenta, Experimental Agriculture 26:325–340.CrossRefGoogle Scholar
  14. El Sharkawy, M. A., Cock, J. H. and Held, K. A. A., 1984, Water use efficiency of cassava Manihot esculenta 2. Differing sensitivity of stomata to air humidity in cassava and other warm climate species, Crop Science 24:503–507.CrossRefGoogle Scholar
  15. El Sharkawy, M. A., Cock, J. H., Lynam, J. K., Del Pilar Hernandez, A. and Fernando Cadavid, L. L., 1990, Relationships between biomass root yield and single-leaf photosynthesis in field-grown cassava, Field Crops Research 25:183–202.CrossRefGoogle Scholar
  16. El Sharkawy, M. A., Del Pilar Hernandez, A. and Hershey, C., 1992, Yield stability of cassava during prolonged mid-season water stress, Experimental Agriculture 28:165–174.Google Scholar
  17. El-Sharkawy, M. A., 2004, Cassava biology and physiology, Plant Molecular Biology 56:481–501.PubMedCrossRefGoogle Scholar
  18. El-Sharkawy, M. A. and Cadavid, L. F., 2002, Response of cassava to prolonged water stress imposed at different stages of growth, Experimental Agriculture 38:333–350.CrossRefGoogle Scholar
  19. El-Sharkawy, M. A., De-Tafur, S. M. and Cadavid, L. F., 1993, Photosynthesis of cassava and its relation to crop productivity, Photosynthetica 28:431–438.Google Scholar
  20. Fernandez, M. D., Tezara, W., Rengifo, E. and Herrera, A., 2002, Lack of downregulation of photosynthesis in a tropical root crop, cassava, grown under an elevated CO2 concentration, Functional Plant Biology 29:805–814.CrossRefGoogle Scholar
  21. Fregene, M., Angel, F., Gómez, R., Rodríiguez, F., Chavarriaga, P., Roca, W., Tohme, J. and Bonierbale, M., 1997, A molecular genetic map of cassava (Manihot esculenta Crantz), Theoretical and Applied Genetics 95:431–441.CrossRefGoogle Scholar
  22. Fregene, M., Bernal, A., Duque, M., Dixon, A. and Tohme, J., 2000, AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD), Theoretical and Applied Genetics 100:678–685.CrossRefGoogle Scholar
  23. Fregene, M. and Mba, C., 2004, In Cassava Breeding, (Ed, Hershey, C.) FAO, Via Caravelle, Rome, Italy.Google Scholar
  24. Fregene, M., Morante, H., Sanchez, T., Marin, J., Ospina, C., Barrera, E., Gutierrez, J., Guerrero, J., Bellotti, A., Santos, L., Alzate, A., Moreno, S. and Ceballos, H., 2006, Molecular markers for introgression of useful traits from wild Manihot relatives of cassava, marker-assisted selection (MAS) of disease and root quality traits., Root Crop Journal:(in press).Google Scholar
  25. Fregene, M., Okogbenin, E., Mba, C., Angel, F., Suarez, M.-C., Janneth, G., Chavarriaga, P., Roca, W., Bonierbale, M. and Tohme, J., 2001, Genome mapping in cassava improvement: Challenges, achievements and opportunities, Euphytica 120:159–165.CrossRefGoogle Scholar
  26. Fregene, M. A., Suarez, M., Mkumbira, J., Kulembeka, H., Ndedya, E., Kulaya, A., Mitchel, S., Gullberg, U., Rosling, H., Dixon, A. G. O., Dean, R. and Kresovich, S., 2003, Simple sequence repeat marker diversity in cassava landraces: Genetic diversity and differentiation in an asexually propagated crop, Theoretical and Applied Genetics 107:1083–1093.PubMedCrossRefGoogle Scholar
  27. Gent, M. P. N., 1994, Photosynthate reserves during grain filling in winter wheat, Agronomy Journal 86:159–167.CrossRefGoogle Scholar
  28. Hawker, J. S. and Smith, G. M., 1982, Salt tolerance and regulation of enzymes of starch synthesis in cassava Manihot esculenta cultivar Maus-7, Australian Journal of Plant Physiology 9:509–518.Google Scholar
  29. Ike, I. F., 1982, Effect of water deficits on transpiration photosynthesis and leaf conductance in cassava Manihot esculenta cultivar Llanera, Physiologia Plantarum 55:411–414.CrossRefGoogle Scholar
  30. Ike, I. F. and Thurtell, G. W., 1981a, Osmotic adjustment in indoor grown cassava Manihot esculenta in response to water stress, Physiologia Plantarum 52:257–262.CrossRefGoogle Scholar
  31. Ike, I. F. and Thurtell, G. W., 1981b, Response of indoor grown cassava Manihot esculenta cultivar Llanera to water deficits and recovery of leaf water potential and stomatal activity after water stress, Journal of Experimental Botany 32:1029–1034.CrossRefGoogle Scholar
  32. Ike, I. F. and Thurtell, G. W., 1981c, Water Relations of Cassava Manihot-Esculenta Water Content Water Osmotic and Turgor Potential Relationships, Canadian Journal of Botany 59:956–964.Google Scholar
  33. Itani, J., Oda, T. and Numao, T., 1999, Studies on mechanisms of dehydration postponement in cassava leaves under short-term soil water deficits, Plant Production Science 2:184–189.CrossRefGoogle Scholar
  34. Jones, H., 1998, Stomatal control of photosynthesis and transpiration, Journal of Experimental Botany 49:387–398.CrossRefGoogle Scholar
  35. Jorge, V., Fregene, M., Velez, C.-M., Duque, M. C., Tohme, J. and Verdier, V., 2001, QTL analysis of field resistance to Xanthomonas axonopodis pv. manihotis in cassava, Theoretical and Applied Genetics 102:564–571.CrossRefGoogle Scholar
  36. Jorge, V., Fregene, M. A., Duque, M. C., Bonierbale, M. W., Tohme, J. and Verdier, V., 2000, Genetic mapping of resistance to bacterial blight disease in cassava (Manihot esculenta Crantz), Theoretical and Applied Genetics 101:865–872.CrossRefGoogle Scholar
  37. Kawano, K., 2003, Thirty years of cassava breeding for productivity: Biological and social factors for success, Crop Science 43:1325–1335.CrossRefGoogle Scholar
  38. Kawano, K., Daza, P., Amaya, A., Rios, M. and Goncalves, W. M. F., 1978, Evaluation of cassava germ-plasm for productivity, Crop Science 18:377–380.CrossRefGoogle Scholar
  39. Lenis, J. I., Calle, F., Jaramillo, G., Perez, J. C., Ceballos, H. and Cock, J. H., 2006, Leaf retention and cassava productivity, Field Crops Research 95:126–134.CrossRefGoogle Scholar
  40. Li, H. Q., Sautter, C., Potrykus, I. and Puonti-Kaerlas, J., 1996, Genetic transformation of cassava (Manihot esculenta Crantz), Nature Biotechnology 14:736–740.PubMedCrossRefGoogle Scholar
  41. Munyikwa, T. R. I., Kreuze, J., Fregene, M., Suurs, L., Jacobsen, E. and Visser, R. G. F., 2001, Isolation and characterisation of cDNAs encoding the large and small subunits of ADP-glucose pyrophosphorylase from cassava (Manihot esculenta Crantz), Euphytica 120:71–83.CrossRefGoogle Scholar
  42. Oguntunde, P. G., 2005, Whole-plant water use and canopy conductance of cassava under limited available soil water and varying evaporative demand, Plant and Soil 278:371–383.CrossRefGoogle Scholar
  43. Okogbenin, E. and Fregene, M., 2002, Genetic analysis and QTL mapping of early root bulking in an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz), Theoretical and Applied Genetics 106:58–66.PubMedGoogle Scholar
  44. Okogbenin, E. and Fregene, M., 2003, Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in cassava (Manihot esculenta Crantz), Theoretical and Applied Genetics 107:1452–1462.PubMedCrossRefGoogle Scholar
  45. Palta, J. A., 1984, Influence of water deficits on gas-exchange and the leaf area development of cassava Manihot esculenta cultivars, Journal of Experimental Botany 35:1441–1449.CrossRefGoogle Scholar
  46. Pardales, J. R., Jr. and Esquibel, C. B., 1996, Effect of drought during the establishment period on the root system development of cassava, Japanese Journal of Crop Science 65:93–97.Google Scholar
  47. Pereira, J. F., Splittstoesser, W. E. and Ogren, W. L., 1986, Photosynthesis in detached leaves of cassava, Photosynthetica 20:286–292.Google Scholar
  48. Perez, J. C., Ceballos, H., Jaramillo, G., Morante, N., Calle, F., Arias, B. and Bellotti, A. C., 2005, Epistasis in cassava adapted to midaltitude valley environments, Crop Science 45:1491–1496.CrossRefGoogle Scholar
  49. Potluri, S.-D.-P. and Prasad, P.-V.-D., 2001, In-vitro studies on the effects of varying levels of sea-salt on two cassava cultivars, Tropical Agriculture 78:62–65.Google Scholar
  50. Raemakers, C. J. J. M., Sofiari, E., Taylor, N., Henshaw, G., Jacobsen, E. and Visser, R. G. F., 1996, Production of transgenic cassava (Manihot esculenta Crantz) plants by particle bombardment using luciferase activity as selection marker, Molecular Breeding 2:339–349.CrossRefGoogle Scholar
  51. Ramanujam, T., 1990, Effect of moisture stress on photosynthesis and productivity of cassava, Photosynthetica 24:217–224.Google Scholar
  52. Schopke, C., Taylor, N. J., Carcamo, R., Beachy, R. N. and Fauquet, C., 1997, Optimization of parameters for particle bombardment of embryogenic suspension cultures of cassava (Manihot esculenta Crantz) using computer image analysis, Plant Cell Reports 16:526–530.CrossRefGoogle Scholar
  53. Schultz, H. R., 2003, Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought, Plant Cell and Environment 26:1393–1405.CrossRefGoogle Scholar
  54. Sundaresan, S. and Sudhakaran, P. R., 1995, Water stress-induced alterations in the proline metabolism of drought-susceptible and -tolerant cassava (Manihot esculenta) cultivars, Physiologia Plantarum 94:635–642.CrossRefGoogle Scholar
  55. Tanksley, S. D. and Nelson, J. C., 1996, Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines, Theoretical and Applied Genetics 92:191–203.CrossRefGoogle Scholar
  56. Tardieu, F. and Simonneau, T., 1998, Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours, Journal of Experimental Botany 49:419–432.CrossRefGoogle Scholar
  57. Taylor, N., Chavarriaga, P., Raemakers, K., Siritunga, D. and Zhang, P., 2004, Development and application of transgenic technologies in cassava, Plant Molecular Biology 56:671–688.PubMedCrossRefGoogle Scholar
  58. Wood, A.J., 2005, Eco-physiological adaptations to limited water environments, In Plant Abiotic Stress, M.A. Jenks and P.M. Hasegawa (eds.), Blackwell Publishing, Oxford, UK, pp. 1–13.Google Scholar
  59. Woodward, B. and Puonti-Kaerlas, J., 2001, Somatic embryogenesis from floral tissue of cassava (Manihot esculenta Crantz), Euphytica 120:1–6.CrossRefGoogle Scholar
  60. Yao, N. R., Goue, B., Zeller, B. and Monteny, B., 1988, Effect of drought on leaf development and dry matter production of the cassava Manihot esculenta Crantz plant, Tropical Agriculture 65:84–88.Google Scholar
  61. Zhang, P. and Gruissem, W., 2004, In Sixth International Scientific Meeting of the Cassava Biotechnology Network., CIAT/CBN, Cali, Colombia, March 8–14, 2004, pp. 99.Google Scholar
  62. Zhang, P. and Gruissem, W., 2005, In The Global Food & Product Chain. Dynamics, Innovations, Conficts, Strategies, Deutscher Tropentag, October 11–13, 2005, Univ. Hohenheim, Stuttgart, Germany.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Tim L. Setter
    • 1
  • Martin A. Fregene
    • 2
  1. 1.Department of Crop and Soil SciCornell UniversityIthacaUSA
  2. 2.Centro Internacional de Agricultura Tropical (CIAT)CaliColombia

Personalised recommendations