Skip to main content

Pattern of natural 15N abundance in lakeside forest ecosystem affected by cormorant-derived nitrogen

  • Chapter
Limnology and Aquatic Birds

Part of the book series: Developments in Hydrobiology ((DIHY,volume 189))

Abstract

Waterbirds are one of the most important groups of organisms inhabiting the land-water interface, especially with regard to mediating the transport of materials from the aquatic to the terrestrial environment. The great cormorant (Phalacrocorax carbo) is a colonial piscivorous bird that transports nutrients from fresh water to forest. We measured cormorant-derived nitrogen at two nesting colonies on the Isaki Peninsula and Chikubu Island at Lake Biwa, Japan, and analyzed the long-term effects of cormorant colonization on the forest nitrogen cycle, and the mechanisms of nitrogen retention. Three sites were examined in each colony: a currently occupied area, a previously occupied but now abandoned area, and a control area never colonized by cormorants. High nitrogen stable isotope ratios of cormorant excreta, the forest floor, mineral soil, and living plants showed cormorant-derived nitrogen in both occupied and abandoned areas. The relationship between δ 15N and N content showed that the high δ 15N of the excreta and N turnover in the soil were important at the occupied sites, whereas high δ 15N of litter was important at the abandoned sites. Physiological changes of various organisms are also important for the N decomposition process. In conclusion, cormorant-derived nitrogen remains in the forest ecosystem as a result of two cormorant activities: heavy deposition of excreta and collection of nitrogen-rich nest material. Colony stage (occupied, abandoned, or never inhabited) and historical change of N decomposition process of an area can be identified from the relationship between δ 15N and N content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D., W. McDowell, K. Nadelhoffer, A. Magill, G. Berntson, M. Kamakea, S. McNulty, W. Currie, L. Rustad & I. Fernandez, 1998. Nitrogen saturation in temperate forest ecosysytems: hypotheses revisited. BioScience 48: 921–934.

    Article  Google Scholar 

  • Amundson, R. & W. T. Baisden, 2000. Stable isotope tracers and mathematical models in soil organic matter studies. In Sala, O. E. et al., (eds), Methods in Ecosystem Science. Springer-Verlag, New York: 117–137.

    Google Scholar 

  • Bligh, E. G. & W. J. Dyer, 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.

    PubMed  CAS  Google Scholar 

  • Bremner, J. M., 1996. N-Total. In Sparks, D. L. et al., (eds), Methods of Soil Analysis. Part 3. SSSA Book Ser. 5. SSSA & ASA, Madison: 1085–1121.

    Google Scholar 

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • Erskine, P. D., D. M. Bergstrom, S. Schmidt, G. R. Stewart, C. E. Tweedie & J. D. Shaw, 1998. Subantarctic Macquarie Island — a model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia 117: 187–193.

    Article  Google Scholar 

  • Evans, R. D. & J. R. Ehleringer, 1993. A break in the nitrogen cycle in aridlands? Evidence from δ15N of soils. Oecologia 94: 314–317.

    Article  Google Scholar 

  • Fujiwara, S. & A. Takayanagi, 2001. The influence of the common cormorant (Phalacrocorax carbo hanedae Kuroda) on forest decline. Applied Forest Science 10: 85–90 (in Japanese with English abstract).

    Google Scholar 

  • Garten, C. T. Jr., 1993. Variations in foliar 15N abundance and the availability of soil nitrogen on Walker Branch Watershed. Ecology 74: 2098–2113.

    Article  Google Scholar 

  • Gillham, M. E., 1956. Ecology of the Pembrokeshire Islands V. Manuring by the colonial seabirds and mammals, with a note on seed distribution by gulls. Journal of Ecology 44: 429–454.

    Article  Google Scholar 

  • Hobara, S., K. Koba, T. Osono, N. Tokuchi, A. Ishida & K. Kameda, 2005. Nitrogen and phosphorus enrichment and balance in forests colonized by cormorants: implications of the influence of soil adsorption. Plant & Soil 268: 89–101.

    Article  CAS  Google Scholar 

  • Hobara, S., T. Osono, K. Koba, N. Tokuchi, S. Fujiwara & K. Kameda, 2001. Forest floor quality and N transformations in a temperate forest affected by avian-derived N deposition. Water, Air, and Soil Pollution 130: 679–684.

    Article  Google Scholar 

  • Hobson, K. A. & R. G. Clark, 1992. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94: 181–188.

    Article  Google Scholar 

  • Hobson, K., J. F. Piatt & J. Pitocchelli, 1994. Using stable isotopes to determine seabird trophic relationships. Journal of Animal Ecology 63: 786–798.

    Article  Google Scholar 

  • International Lake Environment Committee Foundation (ILEC), 1995. Compact-size Edition of Data Book of World Lake Environments — A Survey of the State of World Lakes — Asia and Oceania. Miyagawa Printing Co. Ltd., Otsu, 672 pp.

    Google Scholar 

  • Ishida, A., 1996a. Effects of the common cormorant, Phalacrocorax carbo, on evergreen forests in two nest sites at Lake Biwa, Japan. Ecological Research 11: 193–200.

    Article  Google Scholar 

  • Ishida, A., 1996b. Changes of soil properties in the colonies of the common cormorant, Phalacrocorax carbo. Journal of Forest Research 1: 31–35.

    Article  Google Scholar 

  • Ishida, A., T. Matsuzawa, K. Kameda & M. Narusue, 2000. The population increase of the Great Cormorant Phalacrocorax carbo and its damaging effect on fisheries and trees in Japan — The present situation, the problems in each and future measures. Strix 18: 1–28 (in Japanese with English summary).

    Google Scholar 

  • Ishizuka, K., 1966. Ecology of the ornithocoprophilous plant communities on breeding places of the black-tailed gull, Larus crassirostris, along the coast of Japan. Ecological Review 16: 229–244.

    Google Scholar 

  • Johnsgard, P. A., 1993. Cormorants, Darters, and Pelicans of the World. Smithsonian Institution Press, Washington, 445 pp.

    Google Scholar 

  • Kameda, K., A. Ishida & M. Narusue, 2003. The population increase of the Great Cormorant Phalacrocorax carbo hanedae in Japan: conflicts with fisheries and trees and future perspectives. Vogelwelt 124(Suppl.): 27–33.

    Google Scholar 

  • Kameda, K., T. Matsubara, H. Mizutani & Y. Yamada, 2002. Diet and foraging site selection of the Great Cormorant in Japan. Japanese Journal of Ornithology 51: 12–28 (in Japanese with English abstract).

    Article  Google Scholar 

  • Kawanabe, H., 1999. Biological and cultural diversities in Lake Biwa, an ancient lake. In Kawanabe, H., G. W. Coulter, & A. C. Roosevelt (eds), Ancient Lakes and People. Kenobi Productions, Ahent: 17–41.

    Google Scholar 

  • Koba, K., N. Tokuchi, E. Wada, T. Nakajima & G. Iwatsubo, 1997. Intermittent denitrification: the application of a 15N natural abundance method to a forested ecosystem. Geochimica et Cosmochimica Acta 61: 5043–5050.

    Article  CAS  Google Scholar 

  • Koba, K., N. Tokuchi, T. Yoshioka, E. A. Hobbie & G. Iwatsubo 1998. Natural abundance of nitrogen-15 in a forest soil. Soil Science Society of America Journal 62: 778–781.

    Article  CAS  Google Scholar 

  • Koba, K., K. Takahashi & A. Kohzu, 1999. A review of stable isotope studies of nitrogen dynamics in soil-plant systems in forest ecosystems. Japanese Journal of Ecology 49: 47–51 (in Japanese).

    Google Scholar 

  • Koba, K., M. Hirobe, L. Koyama, A. Kohzu, N. Tokuchi, K. J. Nadelhoffer, E. Wada & H. Takeda, 2003. Natural 15N abundance of plants and soil N in a temperate coniferous forest. Ecosystems 6: 457–469.

    Article  CAS  Google Scholar 

  • Koyama, L. & N. Tokuchi, 2003. Effects of NO 3 availability on NO 3 use in seedlings of three woody shrub species. Tree Physiology 23: 281–288.

    PubMed  Google Scholar 

  • Lindeboom, H. J., 1984. The nitrogen pathway in a penguin rookery. Ecology 65: 269–277.

    Article  CAS  Google Scholar 

  • McColl, J. G. & J. Burger, 1976. Chemical inputs by a colony of Franklin’s gulls nesting in cattails. American Midland Naturalist 96: 270–280.

    Article  CAS  Google Scholar 

  • Maesako, Y., 1997. Effects of streaked shearwaters (Calonectris leucomelas) burrowing on the lucidophyllous forest in Ohshima Island, Japan. Vegetation Science 14: 61–74.

    Google Scholar 

  • Mizutani, H. & E. Wada, 1988. Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology 69: 340–349.

    Article  Google Scholar 

  • Mizutani, H., H. Hasegawa & E. Wada, 1986. High nitrogen isotope ratio for soils of seabird rookeries. Biogeochemistry 2: 221–247.

    Article  CAS  Google Scholar 

  • Mizutani, H., Y. Kabaya, P. J. Moors, T. W. Speir & G. L. Lyon, 1991. Nitrogen isotope ratios identify deserted seabird colonies. Auk 108: 960–964.

    Google Scholar 

  • Mulder, C. P. H. & S. N. Keall, 2001. Burrowing seabirds and reptiles: impacts on seeds, seedlings and soils in an island forest in New Zealand. Oecologia 127: 350–360.

    Article  Google Scholar 

  • Nadelhoffer, K. J. & B. Fry, 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of America Journal 52: 1633–1640.

    Article  Google Scholar 

  • Nadelhoffer, K. J. & B. Fry, 1994. Nitrogen isotope studies in forest ecosystems. In Lajtha, K. & R. H. Michener (eds), Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, London: 22–44.

    Google Scholar 

  • Ohrui, K. & M. J. Mitchell, 1997. Nitrogen saturation of Japanese forested watersheds. Ecological Applications 7: 391–401.

    Article  Google Scholar 

  • Osono, T., S. Hobara, S. Fujiwara, K. Koba & K. Kameda, 2002. Abundance, diversity, and species composition of fungal communities in a temperate forest affected by excreta of the Great Cormorant Phalacrocorax carbo. Soil Biology & Biochemistry 34: 1537–1547.

    Article  CAS  Google Scholar 

  • Polis, G. A. & S. D. Hurd, 1996. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. American Naturalist 147: 396–423.

    Article  Google Scholar 

  • Polis, G. A. & K. O. Winemiller, 1996. Food Webs: Integration of Patterns & Dynamics. Chapman & Hall, New York, 472 pp.

    Google Scholar 

  • Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.

    Article  Google Scholar 

  • Powell, G. V. N., J. W. Fourqurean, W. J. Kenworthy & J. C. Zieman, 1991. Bird colonies cause seagrass enrichment in a subtropical estuary: observational and experimental evidence. Estuarine, Coastal and Shelf Science 32: 567–579.

    Article  Google Scholar 

  • Robinson, D., 2001. δ 15N as an integrator of the nitrogen cycle. Trends in Ecology and Evolution 16: 153–162.

    Article  PubMed  Google Scholar 

  • Shiga Prefecture, 1997. Report of the Assessment of Vegetation Damage on Chikubu Island by the Great Cormorant. Shiga Prefecture, 110 pp. (in Japanese).

    Google Scholar 

  • Schlesinger, W. H., 1997. Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, 588 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kameda, K., Koba, K., Hobara, S., Osono, T., Terai, M. (2006). Pattern of natural 15N abundance in lakeside forest ecosystem affected by cormorant-derived nitrogen. In: Hanson, A.R., Kerekes, J.J. (eds) Limnology and Aquatic Birds. Developments in Hydrobiology, vol 189. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5556-0_7

Download citation

Publish with us

Policies and ethics