Skip to main content

Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

  • Chapter
Limnology and Aquatic Birds

Abstract

Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (<200 μeq l−1) acid-neutralizing capacity (ANC) in south-eastern Maine. We documented bird, pair, and brood use during 1982– 1984 and in 1982 we sampled 10 wetlands with a sweep net to collect invertebrates. We related mean numbers of invertebrates per wetland to water chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almer, B., W. Dickson, C. Ekstrom & E. Hornstrom, 1978. Sulfur pollution and the aquatic ecosystem. In Nriagu, J. (ed.), Sulfur in the Environment. Part II: Ecological Impacts. John Wiley and Sons, New York, NY.

    Google Scholar 

  • Alvo, R., 1985. The breeding success of common loons (Gavia immer) in relation to lake acidity [thesis]. Trent University, Peterborough, Ontario 122 pp.

    Google Scholar 

  • Andersson, G., 1981. Fiskars inverkan pa sjofagel och fagelsjoar. (Influence of fish on waterfowl in lakes). Anser 20: 21–34.

    Google Scholar 

  • Andrews, J. D. & A. D. Hasler, 1944. Fluctuations in the animal populations of the littoral zone of Lake Mendota. Transactions of the Wisconsin Academy of Science, Arts and Letters 35: 175–186.

    Google Scholar 

  • Arner, D. H., E. D. Norwood Jr. & D. M. Teels, 1970. A Study of the Aquatic Ecosystems in Two National Waterfowl Refuges in Mississippi. Water Resources Research Institute, Mississippi State University, College, MS 32 pp.

    Google Scholar 

  • Bailey, R. G., 1978. Description of the Ecoregions of the United States. U.S. Department of Agricultural, Forest Service, Intermountain Region, Ogden, UT 77 pp.

    Google Scholar 

  • Beard, E. B., 1953. The importance of beaver in waterfowl management at the Seney National Wildlife Refuge. Journal of Wildlife Management 17: 398–436.

    Article  Google Scholar 

  • Bell, H. L., 1971. Effect of low pH on the survival and emergence of aquatic insects. Water Resources 5: 313–319.

    Google Scholar 

  • Bendell, B. E. & D. K. McNicol, 1993. Gastropods from small northeastern Ontario lakes: their value as indicators of acidification. Canadian Field-Naturalist 107: 267–272.

    Google Scholar 

  • Bendell, B. E. & D. K. McNicol, 1995. Lake acidity, fish predation, and the distribution and abundance of some littoral insects. Hydrobiologia 302: 133–145.

    Article  CAS  Google Scholar 

  • Boycott, A. E., 1936. The habitats of fresh-water Mollusca in Britain. Journal of Animal Ecology 5: 116–186.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    Article  PubMed  Google Scholar 

  • Brown, M. & J. J. Dinsmore, 1986. Implications of marsh size and isolation for marsh bird management. Journal of Wildlife Management 50: 392–397.

    Article  Google Scholar 

  • Clarke, A. H., 1981. Freshwater mollusks of Canada. National Museums of Canada, Ottawa 446 pp.

    Google Scholar 

  • Cowardin, L., M., V. Carter, F. C. Golet & E. T. LaRoe, 1979. Classification of wetlands and deepwater habitats of the United States. Washington: Fish and Wildlife Service. Report No. FWS/OBS/-79/31: 103 pp.

    Google Scholar 

  • Davis, R. B., J. H. Bailey, M. Scott, G. Hunt & S. A. Norton, 1978. Descriptive and comparative studies of Maine lakes. Life Sciences and Agriculture Experiment Station, Orono, ME. Technical Bulletin 88, 337 pp.

    Google Scholar 

  • DeCosta, J., A. Janicki, G. Shellito & G. Wilcox, 1983. The effect of phosphorus additions in enclosures on the phytoplankton and zooplankton of an acid lake. Oikos 40: 283–294.

    Article  CAS  Google Scholar 

  • DesGranges, J.-L. & M. Darveau, 1985. Effect of lake acidity and morphometry on the distribution of aquatic birds in southern Quebec. Holarctic Ecology 8: 181–190.

    Google Scholar 

  • DesGranges, J.-L. & J. Rodrigue, 1986. Influence of acidity and competition with fish on the development of ducklings in Quebec. Water, Air and Soil Pollution 30: 743–750.

    Article  CAS  Google Scholar 

  • DesGranges, J.-L. & B. Houde, 1989. Effects of lake acidity and other environmental parameters on the distribution of lacustrine birds in Quebec. Canadian Wildlife Service. Occasional Paper 67: 7–41.

    Google Scholar 

  • DesGranges, J.-L. & C. Gagnon, 1994. Duckling response to changes in the trophic web of acidified lakes. Hydrobiologia 279/280: 207–221.

    Article  Google Scholar 

  • Dickson, W., 1978. Some effects of acidification on Swedish lakes. Internationale Vereinigung für Theoretische und Angewandte Limnologie 20: 851–856.

    Google Scholar 

  • Dinsmore, B. H., 1968. The aquatic ecology of Tom’s Run, Clarion Country, Pennsylvania preceding watershed reclamation. Report to the Pennsylvania Department of Mines and Mineral Industries, Bureau of Coal Research and the Pennsylvania Department of Health, Bureau of Sanitary Engineering, Division of Water Quality, Publication 21.

    Google Scholar 

  • Doka, S. E., D. K. McNicol, M. L. Mallory & C. K. Minns, 1997. Species richness and species occurrences of five taxonomic groups in relation to pH and other lake characteristics in southeastern Canada. Canadian Technical Report of Fisheries and Aquatic Sciences 2179, 58 pp.

    Google Scholar 

  • Doka, S. E., D. K. McNicol, M. L. Mallory, I. Wong, C. K. Minns & N. D. Yan, 2003. Assessing potential for recovery of biotic richness and indicator species due to changes in acidic deposition and lake pH in five areas of southeastern Canada. Environmental Monitoring and Assessment 88: 53–101.

    Article  PubMed  CAS  Google Scholar 

  • Eilers, J. M., G. J. Lien & R. G. Berg, 1984. Aquatic organisms in acidic environments: a literature review. Wisconsin Department of Natural Resources, Madison. Technical Bulletin 150, 18 pp.

    Google Scholar 

  • Elmberg, J., K. Sjö berg, P. Nummi & H. Pöysä, 1994. Patterns of lake acidity and waterfowl communities. Hydrobiologia 279/280: 201–206.

    Article  Google Scholar 

  • Eriksson, M. O. G., 1979. Competition between freshwater fish and goldeneyes (Bucephala clangula) (L.) for common prey. Oecologia 41: 99–107.

    Article  Google Scholar 

  • Eriksson, M. O. G., L. Henrikson, B.-I. Nilsson, G. Nyman, H. G. Oscarson, A. E. Stenson & K. Larsson, 1980. Predator-prey relations important for the biotic changes in acidified lakes. Ambio 9: 248–249.

    Google Scholar 

  • France, R. L., 1997. The importance of beaver lodges in structuring littoral communities in boreal headwater lakes. Canadian Journal of Zoology 75: 1009–1013.

    Google Scholar 

  • Fryer, G., 1980. Acidity and species diversity in freshwater crustacean faunas. Freshwater Biology 10: 41–45.

    Article  Google Scholar 

  • Gerking, S. D., 1957. A method of sampling the littoral macrofauna and its application. Ecology 38: 219–226.

    Article  Google Scholar 

  • Gibbs, R. M., 1962. Juvenile mortality in the common goldeneye, Bucephala clangula america, in Maine. Maine Field Naturalist 18: 67–68.

    Google Scholar 

  • Gibbs, J. P., J. R. Longcore, D. G. McAuley & J. K. Ringelman, 1991. Use of Wetland Habitats by Selected Nongame Water Birds in Maine. Fish and Wildlife Service Research 9, 57 pp.

    Google Scholar 

  • Gollop, J. B. & W. H. Marshall, 1954. A Guide for Aging Duck Broods in the Field. Mississippi Flyway Council, Technical Section Report, 14 pp.

    Google Scholar 

  • Grahn, O., H. Hultberg & L. Landner, 1974. Oligotrophication — a self-accelerating process in lakes subjected to excessive supply of acid substances. Ambio 3: 93–94.

    Google Scholar 

  • Haines, T. A. and J. Akielaszek, 1983. A regional survey of chemistry of headwater lakes and streams in New England: vulnerability to acidification. Washington: Fish and Wildlife Service, Eastern Energy and Land Use Team, FWS/OBS/-80/40.15: 141 pp.

    Google Scholar 

  • Havas, M., 1981. Physiological response of aquatic animals to low pH. In Siger, R. (ed.), Effects of Acidic Precipitation on Benthos. Proceedings of Symposiumat Colgate University. North American Benthological Society, Hamilton, NY: 49–65.

    Google Scholar 

  • Havas, M. & G. E. Likens, 1984. Toxicity of aluminum and hydrogen ions to Daphnia catawa, Holopedium gibberum, Chaoborus punctipennis, and Chironomus anthrocinus from Mirror Lake, New Hampshire. Canadian Journal of Zoology 63: 111–119.

    Google Scholar 

  • Healey, M., 1984. Fish predation on aquatic insects. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publishing, New York, NY: 255–288.

    Google Scholar 

  • Hem, J. D., 1959. Study and Interpretation of the Chemical Characteristics of Natural Water. U.S. Geological Survey, Supply Paper 1473, 269 pp.

    Google Scholar 

  • Hendrey, G. R., K. Baalsrud, T. S. Traaen, M. Laake & G. Raddum, 1976. Acid precipitation: some hydrobiological changes. Ambio 5: 224–227.

    CAS  Google Scholar 

  • Henrikson, L. & H. G. Oscarson, 1978. Fish predation limiting abundance and distribution of Glaenocorsia p. propinqua. Oikos 31: 102–105.

    Article  Google Scholar 

  • Hildén, O., 1965. Habitat selection in birds — a review. Annales Zoologici Fennici 2: 53–75.

    Google Scholar 

  • Hilsenhoff, W. L., 1975. Aquatic Insects of Wisconsin: with Generic Keys and Notes on Biology, Ecology and Distribution. Wisconsin Department of Natural Resources. Technical Bulletin 89, 53 pp.

    Google Scholar 

  • Hunter, W. L., 1964. Physiological aspects of ecology in nonmarine mollusks. In Wilbur, K. M. & C. M. Yonge (eds), Physiology of Mollusca. 1 Academic Press, NY: 83–126.

    Google Scholar 

  • Hunter, M. L. Jr., J. J. Jones, K. E. Gibbs & J. R. Moring, 1986. Duckling responses to lake acidification: do black ducks and fish compete?. Oikos 47: 26–32.

    Article  Google Scholar 

  • Jeffries, D. S., T. A. Clair, S. Couture, P. J. Dillon, J. Dupont, W. Keller, D. K. McNicol, M. A. Turner, R. Vet & R. Weeber, 2003. Assessing the recovery of lakes in southeastern Canada from the effects of acidic deposition. Ambio 32: 176–182.

    Article  PubMed  Google Scholar 

  • Joyner, D. E., 1980. Influence of invertebrates on pond selection by ducks in Ontario. Journal of Wildlife Management 44: 461–504.

    Google Scholar 

  • Kadlec, J. A., 1986. Effects of flooding on dissolved and suspended nutrients in small diked marshes. Canadian Journal of Fisheries and Aquatic Sciences 43: 1999–2008.

    Article  CAS  Google Scholar 

  • Kaminski, R. M. & H. H. Prince, 1981. Dabbling duck activity and foraging responses to aquatic macroinvertebrates. Auk 98: 115–126.

    Google Scholar 

  • Keiper, R. R., 1966. The distribution and faunal succession of the macroscopic bottomfauna in three different aged beaver ponds [thesis]. University of Massachusetts, Amherst, MA 96 pp.

    Google Scholar 

  • Kenlan, K. H., G. L. Jacobson Jr. & D. F. Brakke, 1984. Aquatic macrophytes and pH as controls of diversity for littoral cladocerans. In Hendrey, G. R. (ed.), Early Biotic Responses to Advancing lake Acidification. Acid Precipitation Series. 6 Butterworth Publishing, Boston: 63–84 An Ann Arbor Science Book.

    Google Scholar 

  • Kerekes, J., B. Freedman, G. Howell & P. Clifford, 1984. Comparison of the characteristics of an acidic eutrophic, and acidic oligotrophic lake near Halifax, Nova Scotia. Water Pollution Research Journal of Canada 19: 1–10.

    Google Scholar 

  • Klemm, D. J., 1982. Leeches (Annelida: Hirudinea) of North America. Cincinnati (OH): Environmental Protection Agency, Environmental. Monitoring and Support Laboratory. EPA/600/3/-82-025. Cincinnati, OH, 177 pp.

    Google Scholar 

  • Knudsen, G. J., 1962. Relationship of beaver to forests, trout and wildlife in Wisconsin. Wisconsin Conservation Department, Technical Bulletin 25, 52 pp.

    Google Scholar 

  • Krull, J. N., 1970. Aquatic plant-macroinvertebrate associations and waterfowl. Journal of Wildlife Management 34: 707–718.

    Article  Google Scholar 

  • Likens, G. E., 1972. Eutrophication and aquatic ecosystems. In Likens, G. E. (ed.), Nutrients and Eutrophication: the Limiting-nutrient Controversy. Proceedings of Special Symposia. 1 American Society of Limnology and Oceanography, Inc,: 3–13.

    Google Scholar 

  • Lindroth, A. & E. Bergstom, 1959. Notes on the feeding technique of the goosander in streams. Institute of Freshwater Research 40: 165–175.

    Google Scholar 

  • Lloyd, M., J. H. Zar & J. R. Karr, 1968. On the calculation of information-theoretical measures of diversity. The American Midland Naturalist 79: 257–272.

    Article  Google Scholar 

  • Longcore, J. R. & J. K. Ringelman, 1980. Factors affecting waterfowl breeding density and productivity estimates in the northeast. Transactions of Northeast Section, The Wildlife Society 37: 169–181.

    Google Scholar 

  • Longcore, J. R., H. Boyd, R. T. Brooks, G. M. Haramis, D. K. McNicol, J. R. Newman, K. A. Smith & F. Stearns, 1993. Acidic depositions: Effects on wildlife and habitats. The Wildlife Society, Technical Review 93-1, 42 pp.

    Google Scholar 

  • Longcore, J. R., D. A. Clugston & D. G. McAuley, 1998. Brood sizes of sympatric American black ducks and mallards in Maine. Journal of Wildlife Management 62: 142–151.

    Article  Google Scholar 

  • Macan, T. T., 1950. Ecology of freshwaterMollusca in the English Lake District. Journal of Animal Ecology 19: 124–146.

    Article  Google Scholar 

  • Macan, T. T., 1977. The influence of predation on the composition of fresh-water animal communities. Biological Reviews of the Cambridge Philosophical Society 52: 45–70.

    PubMed  CAS  Google Scholar 

  • Mallory, M.L., P. J. Blancher, P. J. Weatherhead & D. K. McNicol, 1994. Presence or absence of fish as a cue to macroinvertebrate abundance in boreal wetlands. Hydrobiologia 279/280: 345–351.

    Article  Google Scholar 

  • McCall, T. C., T. P. Hodgman, D. R. Diefenbach & R. B. Owen Jr., 1996. Beaver populations and their relation to wetland habitat and breeding waterfowl in Maine. Wetlands 16: 163–172.

    Article  Google Scholar 

  • McDowell, D. M. & R. J. Naiman, 1986. Structure and function of a benthic invertebrate stream community as influenced by beaver (Castor canadensis). Oecologia 68: 481–489.

    Article  Google Scholar 

  • McDonald, L. L., B. M. Davis & G. A. Milliken, 1977. A nonrandomized unconditional test for comparing two populations in 2×2 contingency tables. Technometrics 19: 145–157.

    Article  Google Scholar 

  • McGaha, Y. J., 1952. The limnological relations of insects to certain aquatic flowering plants. Transactions of the American Microscopical Society 71: 355–381.

    Article  Google Scholar 

  • McKnight, D. E. & J. B. Low, 1969. Factors affecting waterfowl production of a spring-fed salt marsh in Utah. Transactions of the North American Wildlife and Natural Resources Conference 34: 307–314.

    Google Scholar 

  • McNicol, D. K., 1999. The Canadian Wildlife Service Acid Rain Biomonitoring Program — Monitoring and modelling the effects of acid rain on waterbirds in eastern Canada. In: Raddum, G. G., B. O. Rosseland & J. Bowman (eds), Proceedings of a Workshop on Biological Assessment and Monitoring: Evaluation and Models, ICP Water Report 50, Zakopane, Poland, 13 Oct. 1999.

    Google Scholar 

  • McNicol, D. K., 2002. Relation of lake acidification and recovery to fish, Common Loon and Common Merganser occurrence in Algoma Lakes. Water, Air and Soil Pollution: Focus 2: 151–168.

    Article  CAS  Google Scholar 

  • McNicol, D. K., B. E. Bendell, & R. K. Ross, 1987. Studies of the effects of acidification on aquatic wildlife in Canada: waterfowl and trophic relationships in small lakes in northern Ontario. Canadian Wildlife Service. Occasional Paper, Number 62, 76 pp.

    Google Scholar 

  • McNicol, D. K. & M. Wayland, 1992. Distribution of waterfowl broods in Sudbury area lakes in relation to fish, macroinvertebrates, and water chemistry. Canadian Journal of Fisheries and Aquatic Sciences 49(1, Supplement): 122–133.

    Google Scholar 

  • McNicol, D. K., M. L. Mallory & H. S. Vogel, 1995. Using volunteers to monitor the effects of acid precipitation on common loon (Gavia immer) reproduction in Canada: the Canadian Lakes Loon Survey. Water, Air and Soil Pollution 85: 463–468.

    Article  Google Scholar 

  • McNicol, D. K., M. L. Mallory & J. Sechley, 1998. Acid Rain and wildlife: An annotated bibliography of Canadian Wildlife Service (Ontario Region) LRTAP Program Publications (1980–1997). Technical Report Series, No. 305, Canadian Wildlife Service, Ontario Region.

    Google Scholar 

  • Milliken, G. A. & D. E. Johnson, 1984. Analysis of Messey Data — Volume 1: Designed Experiments. Lifetime Learning Publishing, Belmont, CA 473 pp.

    Google Scholar 

  • Morin, P. J., 1984. The impact of fish exclusion on the abundance and species composition of larval odonates: results of short-term experiments in a North Carolina farm pond. Ecology 65: 53–60.

    Article  Google Scholar 

  • Mossberg, P. & P. Nyberg, 1979. Bottom fauna of small acid forest lakes. Institute of Freshwater Research. Drottningholm, Sweden, Report 58: 77–87.

    Google Scholar 

  • Moyle, J. B., 1961. Aquatic invertebrates as related to larger water plants and waterfowl. Minnesota Department of Conservation. Investigation Report 233, 24 pp.

    Google Scholar 

  • Munro, J. A., 1945. Observations of the loon in Cariboo Parklands, British Columbia. Auk 62: 38–49.

    Google Scholar 

  • Murkin, H. R. & J. A. Kadlec, 1986. Relationship between waterfowl and macroinvertebrate densities in a northern prairie marsh. Journal of Wildlife Management 50: 212–217.

    Article  Google Scholar 

  • Murkin, H. R. & L. C. M. Ross, 1999. Northern prairie marshes (Delta Marsh, Manitoba): macroinvertebrate responses to a simulated wet-dry cycle. In Batzer, D., R. D. Rader & S. A. Wissinger (eds), Invertebrates in Freshwater Wetlands of North America: Ecology and Management. Wiley, New York, NY: 543–569.

    Google Scholar 

  • Murkin, H. R., R. M. Kaminski & R. D. Titman, 1982. Responses by dabbling ducks and aquatic invertebrates to an experimentally manipulated cattail marsh. Canadian Journal of Zoology 60: 2324–2332.

    Article  Google Scholar 

  • Murphy, S. M., B. Kessel & L. J. Vining, 1984. Waterfowl populations and limnologic characteristics of taiga ponds. Journal of Wildlife Management 48: 1156–1163.

    Article  CAS  Google Scholar 

  • Naiman, R. J., J. M. Melillo & J. E. Hobbie, 1986. Ecosystem alteration of boreal forest streams by beaver (Castor canadensis). Ecology 67: 1254–1269.

    Article  Google Scholar 

  • Naiman, R. J., G. Pinay, C. A. Johnston & J. Pastor, 1994. Beaver influences on the long-term biogeochemical characteristics of boreal forest drainage networks. Ecology 75: 905–921.

    Article  Google Scholar 

  • NAPAP, 1990. National Acid Precipitation Assessment Program, Annual Report, 1989 and Findings Update. Sec. 2, Aquatic effects, NAPAP, Washington, DC, F-3 to F-16 pp.

    Google Scholar 

  • NAPAP, 1991. National Acid Precipitation Assessment Program-1990. Intergrated Assessment Report. The NAPAP Office of the Director, Washington, DC 520 pp.

    Google Scholar 

  • Nelson, J. W. & J. A. Kadlec, 1984. A conceptual approach to relating habitat structure and macroinvertebrate production in freshwater wetlands. Transactions of the North American Wildlife and Natural Resources Conference 49: 262–270.

    Google Scholar 

  • Nilsson, S. G. & I. N. Nilsson, 1978. Breeding bird community densities and species richness in lakes. Oikos 31: 214–221.

    Article  Google Scholar 

  • Norton, S. A., 1980. Geological factors controlling the sensitivity of aquatic ecosystems to acid precipitation. In Shriner, D. S., C. R. Richmond & S. E. Lindberg, (eds), Atmospheric Sulfur Deposition: Environmental Impact and Health Effects. Ann Arbor Science Publication, Ann Arbor, MI: 521–531.

    Google Scholar 

  • Okland, J., 1969. Distribution and ecology of the freshwater snails (Gastropoda) of Norway. Malacologia 9: 143–151.

    Google Scholar 

  • Osberg, P. H., A. M. Hussey II & G. M. Boone (eds), 1985. Bedrock Geologic Map of Maine. Department of Conservation, Maine Geological Survey, Augusta, ME 1 p.

    Google Scholar 

  • Parker, K. E. & R. H. Brocke, 1984. Foraging and reproduction of the common loon Gavia immer on acidified and non-acidified lakes in the Adirondack Park, NY. Final Report to the North American Loon Fund, 1984 Field Season, 47 pp.

    Google Scholar 

  • Parker, G. R., M. J. Petrie & D. T. Sears, 1992. Waterfowl distribution relative to wetland acidity. Journal of Wildlife Management 56: 268–274.

    Article  Google Scholar 

  • Patterson, J. H., 1976. The role of environmental heterogeneity in the regulation of duck populations. Journal of Wildlife Management 40: 22–32.

    Article  Google Scholar 

  • Peckarsky, B. I., 1984. Predator-prey interactions among aquatic insects. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publishing, New York, NY: 196–254.

    Google Scholar 

  • Pennak, R. W., 1953. Fresh-water Invertebrates of the United States. The Roland Press Company, New York 769 pp.

    Google Scholar 

  • Perkin-Elmer, 1976. Analytical Methods for Atomic Absorption Spectrophotometry. Norwalk, CT.

    Google Scholar 

  • Perkin-Elmer, 1981. Analytical Methods for Furnace Atomic Absorption Spectrophotometry. Norwalk, CT.

    Google Scholar 

  • Pritchard, G., 1964. The prey of dragonfly larvae (Odonata: Anisoptrera) in ponds in northern Alberta. Canadian Journal of Zoology 42: 785–800.

    Google Scholar 

  • Raddum, G. G., 1980. Comparison of benthic invertebrates in lakes with different acidity. In Drablos, D. & A. Tollan (eds), Ecological Impact of Acid Precipitation. Proceedings of International Conference, SNSF Project, Sandefjord, Norway: 330–331.

    Google Scholar 

  • Reader, R. J., 1978. Primary Production in Northern bog Marshes. In Good, R. E., D. F. Whigham & R. L. Simpson, (eds) Freshwater Wetlands Ecological Processes and Management Potential. Academic Press, New York, NY: 53–62.

    Google Scholar 

  • Reinecke, K. J., 1977. The Importance of Freshwater Invertebrates and Female Energy Reserves for Black Ducks Breeding in Maine [dissertation]. University of Maine, Orono, ME 113 pp.

    Google Scholar 

  • Reinecke, K. J., 1979. Feeding ecology and development of juvenile black ducks in Maine. Auk 96: 737–745.

    Google Scholar 

  • Richardson, C. J., 1979. Primary productivity values in freshwater wetlands. In Greeson, P. E., J. R. Clark & J. E. Clark, (eds), Wetland Functions and Values; State of our Understanding. American Water Resources Association, Minneapolis, MN: 131–145.

    Google Scholar 

  • Ringelman, J. K., 1980. The Breeding Ecology of the Black Duck in South-central Maine [dissertation]. University of Maine, Orono, ME 89 pp.

    Google Scholar 

  • Ringelman, J. K. & J. R. Longcore, 1982. Movements and wetland selection by brood-rearing black ducks. Journal of Wildlife Management 46: 615–621.

    Article  Google Scholar 

  • Rolauffs, P., D. Hering & S. Lohse, 2001. Composition, invertebrate community and productivity of a beaver dam in comparison to other stream habitat types. Hydrobiologia 459: 201–212.

    Article  Google Scholar 

  • Sawyer, L. E., 1979. Maine Audubon Society loon survey 1978. In Sutcliffe, S.A. (ed.), The Common Loon. Proceedings 2nd North American Conference on Common Loon Research and Management. National Audubon Society, Meredith, NH: 81–99.

    Google Scholar 

  • Sawyer, R. T., 1974. Leeches (Annelida: Hirudinea). In Hart C. W. Jr. & S. L. H. Fuller (eds), Pollution Ecology of Freshwater Invertebrates. New York: Academic Press: 81–142.

    Google Scholar 

  • Scheuhammer, A. M., 1991. Effects of acidification on the availability of toxic metals and calcium to wild birds and mammals. Environmental Pollution 71: 329–375.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, K. W. & R. W. Bode, 1980. Common Larvae of Chironomidae (Diptera) from New York State Streams and Rivers with Particular Reference to the Fauna of Artificial Substrates. New York State Museum, Albany, NY, Bulletin 439 105 pp.

    Google Scholar 

  • Staicer, C. A., B. Freedman, K. Srivastava, N. Dowd, J. Kilgar, J. Hayden, F. Payne & T. Pollock, 1994. Use of lakes by black duck broods in relation to biological, chemical, and physical features. Hydrobiologia 279/280: 185–199.

    Article  Google Scholar 

  • Stenson, A. E., 1978. Differential predation by fish on two species of Chaoborus (Diptera, Chaoboridae) Oikos 31: 98–101.

    Article  Google Scholar 

  • Street, M., 1982. Management of artificial wetlands for waterfowl — a novel technique to increase the availability of invertebrate food items. Transactions of the International Congress of Game Biology 14: 159–174.

    Google Scholar 

  • Stumm, W. & J. Morgan, 1970. Aquatic Chemistry: an Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley-Interscience, New York, NY 598 pp.

    Google Scholar 

  • Thompson, W. B. & H. W. Borns Jr. (eds), 1985. Surficial Geologic Map of Maine. Department of Conservation, Maine Geological Survey: 1 p.

    Google Scholar 

  • Voigts, D. K., 1976. Aquatic invertebrate abundance in relation to changing marsh vegetation. The American Midland Naturalist 95: 313–322.

    Article  Google Scholar 

  • Wayland, M. & D. K. McNicol, 1990. Status report on the effects of acid precipitation on common loon reproduction in Ontario: The Ontario Loon Survey. Technical Report Series 92. Canadian Wildlife Service.

    Google Scholar 

  • Wayland, M. & D. K. McNicol, 1994. Movement and survival of common goldeneye broods near Sudbury, Ontario, Canada. Canadian Journal of Zoology 72: 1252–1259.

    Google Scholar 

  • Weller, M. W. & L. H. Fredrickson, 1974. Avian ecology of a managed glacial marsh. Living Bird 12: 269–291.

    Google Scholar 

  • Weller, M. W. & C. E. Spatcher, 1965. Role of habitat in the distribution and abundance of marsh birds. Iowa State University, Agriculture and Home Economics Experiment Station. Special Report 43, 31 pp.

    Google Scholar 

  • Westlake, D. F., 1963. Comparisons of plant productivity. Biological Reviews of the Cambridge Philosophical Society 38: 385–425.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1979. Limnological Analysis. W. B. Saunders Company, Philadelphia, PA 357 pp.

    Google Scholar 

  • Whitman, W. R., 1974. The Response of Macroinvertebrates to Experimental Marsh Management [dissertation]. University of Maine, Orono, ME 114 pp.

    Google Scholar 

  • Wiederholm, T. & L. Eriksson, 1977. Benthos of an acid lake. Oikos 29: 261–267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Longcore, J.R., McAuley, D.G., Pendelton, G.W., Bennatti, C.R., Mingo, T.M., Stromborg, K.L. (2006). Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine. In: Hanson, A.R., Kerekes, J.J. (eds) Limnology and Aquatic Birds. Developments in Hydrobiology, vol 189. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5556-0_12

Download citation

Publish with us

Policies and ethics