Skip to main content

TROPHIC NETWORK MODELS AND PREDICTION OF TOXIC SUBSTANCES ACCUMULATION IN FOOD WEBS

  • Conference paper
Assessment of the Fate and Effects of Toxic Agents on Water Resources

Part of the book series: NATO Security through Science Series ((NASTC))

Abstract

The term food web or trophic network defines a set of interconnected food chains by which energy and materials circulate within an ecosystem. The classical food web could be divided into two broad categories: the grazing web, which typically begins with green plants, algae, or photosynthesizing plankton, and the detrital web, which begins with organic debris. In a grazing web, materials typically pass from plants to herbivores to flesh eaters. In a detrital web, materials pass from plant and animal matter to decomposers as fungi and bacteria, then to detritivores, and then to their predators. In water ecosystems, the classical food web is represented by the planktonic and benthic food webs, which are interconnected. Additionally, the “microbial loop” represents an alternative pathway of carbon flowthat leads from bacteria to protozoa to metazoa, with dissolved organic matter (DOM) being utilized as substrate by the bacteria, which include nanoplankton (2–20 μm in size) and picoplankton (0.2–2 μm in size).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Booth, S., D. Zeller, 2005. Mercury, food webs, and marine mammals: implications of diet and climate change for human health, Environ. Health Perspect., 113, 521–526.

    Article  CAS  Google Scholar 

  • Camanzo, J., C.P. Rice, D.J. Jude, and R. Rossmann, 1987. Organic priority pollutants in nearshore fish fiorn 14 Lake Michigan tributaries and embayments, 1983, J. Great Lakes Res., 13 (3), 296–309.

    Article  CAS  Google Scholar 

  • Carrer, S., B. Halling-Sorensen, and G. Bendoricchio, 2000. Modelling the fate of dioxins in a trophic network by coupling an ecotoxicological and an Ecopath model, Ecol. Modelling, 126 (2–3), 201–223.

    Article  CAS  Google Scholar 

  • Christensen, V., and C.J. Walters, 2004. Ecopath with Ecosim: Methods, capabilities and limitations, Ecol. Modelling, 172, 109–139.

    Article  Google Scholar 

  • Christensen, Walters, and Pauly, 2005. Ecopath with Ecosim: A User’s Guide, Univ. of British Columbia, Vancouver.

    Google Scholar 

  • Gourlay, C., M.H. Tusseau-Vuillemin, J.M. Mouchel, and J. Garric, 2005. The ability of dissolved organic matter (DOM) to influence benzo[a]pyrene bioavailability increases with DOM, Ecotoxicol. Environ. Safety, 61, 74–82.

    Article  CAS  Google Scholar 

  • Haffner, G.D., M. Tomczak, and R. Lazar, 1994. Organic contaminant exposure in the Lake St. Clair food web, Hydrobiologia, 281, 19–27.

    Article  CAS  Google Scholar 

  • Koelmans, A.A., A. van der Heide, L.M. Knijff, and R.H. Aalderink, 2001. Integrated modelling of eutrophication and organic contaminant fate and effects in aquatic ecosystems: A review, Water Resources, 35, 3517–3536.

    CAS  Google Scholar 

  • Lee, H., 1992. Chapter 12: Models, muddles, and mud: Predicting bioaccumulation of sediment associated pollutants, edited by G.A. Burton, Jr., Sediment Toxicity Assessment. Lewis Publishers, Boca Raton, pp. 267–393.

    Google Scholar 

  • MacDonald, R.W., and J.M. Bewers, 1996. Contaminants in the arctic marine environment: priorities for protection, ICES J. Marine Sci., 53, 537–563.

    Article  Google Scholar 

  • MacDonald, C.R., C.D. Metcalfe, G.C. Balch, and T.L. Metcalfe, 1993. Distribution of PCB congeners in seven lake systems: Interactions between sediment and food-web transport, Environ. Toxicol. Chem., 12, 1991–2003.

    CAS  Google Scholar 

  • Morrison, H.A., F.A.P.C. Gobas, R. Lazar, D.M. Whittle, and G.D. Hafier, 1997. Development and verification of a benthic/pelagic food web bioaccumulation model for PCB congeners in western Lake Erie, Environ. Sci. Technol., 31, 3267–3273.

    Article  CAS  Google Scholar 

  • Muir, D., B. Braune, B. DeMarch, R. Norstrom, R. Wagemann, M. Gamberg, K. Poole, R. Addison, D. Bright, M. Dodd, W. Dushenko, J. Earner, M. Evans, B. Elkin, S. Grundy, B. Hargrave, C. Hebert, R. Johnstone, K. Kidd, B. Koenig, L. Lockhart, J. Payne, J. Peddle, and K. Reimer, 1997. Chapter 3: Ecosystem Uptake and Effects, edited by F. Jensen, K. Adare, and R. Shearer, Canadian Arctic Contaminants Assessment Report, Indian and Northern Affairs Canada, Ottawa, No. 19, 1–294.

    Google Scholar 

  • Muir, D.C.G., R.J. Norstrom, and M. Simon, 1988. Organochlorine contaminants in Arctic marine food chains: Accumulation of specific polychlorinated biphenyls and chlordane-related compounds, Environ. Sci.Technol., 22, 1071–1079.

    Article  CAS  Google Scholar 

  • Norstrom, R.J., A.E. McKinnon, A.S.W. DeFreitas, 1976. A bioenergetics-based model for pollutant accumulation by fish—Simulation of PCB and methylmercury residue levels in Ottawa River yellow perch (Perca flavescens), J. Fisheries Res. Board Canada, 33, 348–267.

    Google Scholar 

  • Pastor, D., J. Boix, V. Fernandez, and J. Albaiges, 1996. Bioaccumulation of organochlorinated contaminants in three estuarine fish species (Mullus barbatus, Mugil cephalus and Dicentrarcus labrax), Marine Pollut. Bull., 32 (3), 257–262.

    Article  CAS  Google Scholar 

  • Polovina, J.J., 1984a. Model of a coral reef ecosystems I. The ECOPATH model and its application to French Frigate Shoals, Coral Reefs, 3, 1–11.

    Article  Google Scholar 

  • Polovina, J.J., 1984b. An overview of the ECOPATH model, Fishbyte, 2, 5–7.

    Google Scholar 

  • Rowan, D.J., and J.B. Rasmussen, 1992. Why don’t Great Lakes fish reflect environmental concentrations of organic contaminants? An analysis of between-lake variability in the ecological partitioning of PCBs and DDT, J. Great Lakes Res., 18 (4), 724–741.

    CAS  Google Scholar 

  • Schaanning, M.T., K. Hylland, D. Eriksen, T.D. Bergan, J.S. Gunnarson, and J. Skei, 1996. Interactions between eutrophication and contaminants. II. Mobilization and bioaccumulation of Hg and Cd from marine sediments, Marine Pollut. Bull., 33, 71–79.

    Article  CAS  Google Scholar 

  • Shaw, G.R., and D.W. Connelt, 1986. Chapter 6: Factors controlling bioaccumulation of PCBs, edited by J.S. Waid, PCBs and the Environment, CRC Press, Boca Raton, pp. 121–134.

    Google Scholar 

  • Sijm, D.T.H.M., W. SeInen, and A. Opperhulzen, 1992. Life-cycle biomagnification study in fish, Environ. Sci.Technol., 26 (11), 2162–2174.

    Article  CAS  Google Scholar 

  • van der Oost, R., A. Opperhuizen, A.K. Satumalay, H. Heida, and N.P.E. Vermeulen, 1996. Biomonitoring aquatic pollution with feral eel (Anguilla anguilla) 1. Bioaccumulation: biota-sediment ratios of PCBs, OCPs, PCDDs and PCDFs, Aquatic Toxicol., 35, 21–46.

    Article  Google Scholar 

  • Walters, C., V. Christensen, and D. Pauly, 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments Reviews in Fish Biology and Fisheries, 7, 139–172.

    Google Scholar 

  • Winberg, G.G., 1956. Rate of metabolism and food requirements of fishes, Transl. Fish Res. Board Canada, 194, 1–253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Razinkovas, A. (2007). TROPHIC NETWORK MODELS AND PREDICTION OF TOXIC SUBSTANCES ACCUMULATION IN FOOD WEBS. In: Gonenc, I.E., Koutitonsky, V.G., Rashleigh, B., Ambrose, R.B., Wolflin, J.P. (eds) Assessment of the Fate and Effects of Toxic Agents on Water Resources. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5528-7_13

Download citation

Publish with us

Policies and ethics