Skip to main content

Microscopic Models Of Channel Function

  • Chapter
Voltage-Sensitive Ion Channels

The phenomenological models of Chapter 9 are not complete explanations of the voltage-dependent gating, selectivity and permeation processes they are intended to explain. The Hodgkin — Huxley and related models fail to explain microscopic phenomena, such as the depressed Cole—Cole semicircles and the observed fluctuations. In this chapter we examine proposed microscopic models that seek to build a theoretical scaffolding to answer the questions posed in Chapter 1.

Noise and admittance studies show that the Na channel is a nonlinear, nonequilibrium system. Neurotoxin studies show that the transition to single-channel sodium conduction is suppressed by a single TTX molecule. We will analyze the conventional view that the channel is a water-filled structural pore before considering alternative models more or less grounded on physical and chemical principles. Since speculation appears to be necessary for a leap to a new paradigm, we will review a number of proposed models, most but not all microscopic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References And Notes

  1. Bertil Hille, Ion Channels of Excitable Membranes, Third Edition, Sinauer, Sunderland, 2001.

    Google Scholar 

  2. Hille, 351–354.

    Google Scholar 

  3. O. S. Andersen, Ann. Rev. Physiol. 46:531–548, 1984.

    Article  Google Scholar 

  4. R. P. Feynman, The Feynman Lectures on Physics II, Addison-Wesley, 1964, 1–9.

    Google Scholar 

  5. The physical basis of selectivity is reviewed in J. M. Diamond and E. M. Wright, Ann. Rev. Physiol. 31:581–646, 1969.

    Article  Google Scholar 

  6. G. Eisenman, in Symposium on Membrane Transport and Metabolism., edited by A. Kleinzeller and A. Kotyk, Academic, New York, 1961, 163–179; D. Junge, Nerve and Muscle Excitation, Sinauer, Sunderland, 1981, 41.

    Google Scholar 

  7. H. Meves and W. K. Chandler, J. Gen. Physiol. 48:31, 1965.

    Article  Google Scholar 

  8. H. H. Ussing, Acta Physiol. Scand. 13:409–442, 1949.

    Google Scholar 

  9. H. R. Leuchtag, Biophys. J. 45:263a, 1984.

    Article  Google Scholar 

  10. K. S. Cole, Membranes, Ions and Impulses, 349–352.

    Google Scholar 

  11. Hille, 356f.

    Google Scholar 

  12. G. Herzberg, Atomic Spectra and Atomic Structure, Dover, 1937.

    Google Scholar 

  13. Charles Kittel, Introduction to Solid State Physics, Third Edition, Wiley, New York, 1966, 89f.

    Google Scholar 

  14. F. Bezanilla and C. M. Armstrong, J. Gen. Physiol. 60:588–608, 1972.

    Article  Google Scholar 

  15. B. Hille, J. Gen. Physiol. 61:669–686, 1973.

    Article  Google Scholar 

  16. D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait and R. MacKinnon, Science 280:69–77, 1998.

    Article  ADS  Google Scholar 

  17. H. R. Leuchtag, Biophys. J. 62:22–24, 1992.

    Article  ADS  Google Scholar 

  18. H. Hasegawa, W. Skach, O. Baker, M. C. Calayag, V. Lingappa and A. S. Verkman, Science 258:1477, 1992.

    Article  ADS  Google Scholar 

  19. Hille, 89.

    Google Scholar 

  20. Mark S. P. Sansom, Indira H. Srivastava, Kishani M. Ranatunga and Graham R. Smith, TIBS 25:368–374, 2000.

    Google Scholar 

  21. M. E. Green and J. Lewis, Biophys. J. 59, 419–426, 1991; M. E. Green and J. Lu, Colloid and Interface Sci. 171, 117–126, 1995; J. Lu and M. E. Green, Prog. Colloid Polym. Sci. 103:121–129, 1997; J. Lu, J. Yin and M. E. Green, Ferroelectrics 220:249–271, 1999; Alla Sapronova, Vladimir S. Bystrov and Michael E. Green, Frontiers in Bioscience 8:1356–1370, 2003.

    Article  ADS  Google Scholar 

  22. S. Nakajima, S. Iwasaki and K. Obata, J. Gen. Physiol. 46:97–115, 1962.

    Article  Google Scholar 

  23. C. M. Armstrong, Physiol. Rev. 61:644–683, 1981.

    Google Scholar 

  24. Hille, 326.

    Google Scholar 

  25. Ronald Pethig, Dielectric and Electronic Properties of Biological Materials, John Wiley, Hoboken, NJ, 1979.

    Google Scholar 

  26. R. B. Parlin and H. Eyring, in Ion Transport across Membranes, edited by H. T. Clarke and D. Nachmansohn, Academic, New York, 1954, 103–118.

    Google Scholar 

  27. Henry Eyring and Dan W. Urry, in Theoretical and Mathematical Biology, edited by Talbot H. Waterman and Harold J. Morowitz, Blaisdell, New York, 1965, 57–95.

    Google Scholar 

  28. F. Bezanilla and C. M. Armstrong, J. Gen. Physiol. 70:549–566, 1977; C. M. Armstrong and F. Bezanilla, J. Gen. Physiol. 70:567–590, 1977.

    Article  Google Scholar 

  29. Hille, 629; C. M. Armstrong and F. Bezanilla, J. Gen. Physiol. 70:567–590, 1977.

    Google Scholar 

  30. T. Hoshi, W. N. Zagotta and R. W. Aldrich, Science 250:533–538, 1990; W. N. Zagotta, T. Hoshi and R. W. Aldrich, Science 250:568–571, 1990.

    Article  ADS  Google Scholar 

  31. I. Haiduc and F. T. Edelmann, Supramolecular Organometallic Chemistry, Wiley VCH, Weinheim, 1999, 1–26.

    Book  Google Scholar 

  32. Ernst Grell, Theodor Funck and Frieder Eggers, in Membranes: A Series of Advances, edited by by George Eisenman, Marcel Dekker, New York, 1975, 1–126.

    Google Scholar 

  33. T. Saji and I. Kinoshita, J. Chem. Soc., Chem. Communic. 1986:716–717.

    Google Scholar 

  34. Haiduc and Edelmann, 53.

    Google Scholar 

  35. Haiduc and Edelmann, 371.

    Google Scholar 

  36. P. Powell, Principles of Organometallic Chemistry, Second Edition, Chapman and Hall, London, 191.

    Google Scholar 

  37. R. E. Dinnebier, U. Behrens and F. Olbrich, Organometallics 16: 3855, 1997; Haiduc and Edelmann, 429.

    Article  Google Scholar 

  38. A. S. Davydov, Solitons in Molecular Systems, D. Reidel Publishing Co., Dordrecht, 1985, 78–91.

    MATH  Google Scholar 

  39. J. H. Schön, Ch. Kloc, B. Batlogg, Science 293:2432–2434, 2001; 10.1126/science.1064773.

    Article  ADS  Google Scholar 

  40. R. Buckminster Fuller, Critical Path, St. Martins Press 1981.

    Google Scholar 

  41. L. Onsager, in The Neurosciences, edited by C. G. Quarton et al., Rockefeller University, New York, 1967,75–79.

    Google Scholar 

  42. B. W. Holland, in Cooperative Phenomena, edited by H. Haken and M. Wagner, Springer-Verlag, New York, 1973, 404–412.

    Google Scholar 

  43. Donald C. Chang, in Structure and Function in Excitable Cells, edited by D.C. Chang, I. Tasaki, W. J. Adelman, Jr., and H. R. Leuchtag, Plenum, New York, 1983, 227–254. With kind permission of Springer Science and Business Media.

    Google Scholar 

  44. J. Metuzals and I. Tasaki, J. Cell Biol. 78:597–621, 1978.

    Article  Google Scholar 

  45. Harvey M. Fishman, Biophys. J. 35:249–255, 1981.

    Article  Google Scholar 

  46. I. Tasaki, I. Singer and T. Takenaka, J. Gen. Physiol. 48:1095–1123, 1965.

    Article  Google Scholar 

  47. L. Bass and W. J. Moore, in Structural Chemistry and Molecular Biology, edited by A. Rich and N. Davidson, W. H. Freeman, San Francisco, 1968, 356–369.

    Google Scholar 

  48. See, e.g., pages 43–47 of P. Läuger and B. Neumcke, in Membranes, vol. 2, edited by G. Eisenman, Marcel Dekker, Inc., New York, 1–59.

    Google Scholar 

  49. Alla Sapronova, Vladimir S. Bystrov and Michael E. Green, J. Molec. Struct. (Theochem) 630: 297–307, 2003.

    Article  Google Scholar 

  50. C. L. Schauf, in Structure and Function in Excitable Cells, edited by D.C. Chang, I. Tasaki, W. J. Adelman, Jr. and H. R. Leuchtag, Plenum, New York, 1983, 347–363.

    Google Scholar 

  51. L. Y. Wei, Bull. Math. Biophys. 31:39–58, 1969; Ann. N. Y. Acad. Sci. 227, 285–293, 1974.

    Article  Google Scholar 

  52. H. Sato, I. Tasaki, E. Carbone and M. Hallett, J. Mechanochem. Cell Motility 2:209–217, 1973; I. Tasaki, Physiology and Electrochemistry of Nerve Fibers, Academic, New York, 1982.

    Google Scholar 

  53. K. Iwasa, I. Tasaki and R. C. Gibbons, Science 210: 338–339, 1980; I. Tasaki and K. Iwasa, Japan. J. Physiol. 32, 69–81, 1982; I. Tasaki, Physiology and Electrochemistry of Nerve Fibers, Academic, New York, 1982; Ferroelectrics 220:305–316, 1999.

    Article  ADS  Google Scholar 

  54. G. Baumann and P. Mueller, J. Supramolec. Struct. 2:538–557, 1974.

    Article  Google Scholar 

  55. G. Baumann, Math. Biosci. 46:107–115, 1979.

    Article  Google Scholar 

  56. A. Mauro, Biophys. J. 2:179–198; H. G. L. Coster, E. P. George and R. Simons, Biophys. J. 9:666–684, 1969; G. Adam, J. Membrane Biol. 3:291–312, 1970.

    Google Scholar 

  57. W. Schwarz, Pflügers Arch. 382:27–34, 1979; Pradip Das and W.H. Schwarz, phys. Rev. E 51:3588–3612, 1995.

    Article  Google Scholar 

  58. H. Fröhlich, in Coherent Excitations in Biological Systems, edited by H. Fröhlich and F. Kremer, Springer, Berlin, 1983, 1–5.

    Google Scholar 

  59. S.E. Bresler and V.M. Bresler, Dokl. Akad. Nauk SSSR 214: 936–939, 1974; S.E. Bresler, Sov. Phys. Usp. 18 (1):62–73, 1975.

    Google Scholar 

  60. K. Larsson and I. Lundström, in Lyotropic Liquid Crystals and the Structure of Biomembranes, edited by Stig Friberg, American Chemical Society, Washington, DC, 1976, 43–70.

    Chapter  Google Scholar 

Download references

Editor information

H. Richard Leuchtag

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Microscopic Models Of Channel Function. In: Leuchtag, H.R. (eds) Voltage-Sensitive Ion Channels. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5525-6_14

Download citation

Publish with us

Policies and ethics