Skip to main content

LASER-BASED SYNTHESIS, DIAGNOSTICS, AND CONTROL OF SINGLE-WALLED CARBON NANOTUBES AND NANOHORNS FOR COMPOSITES AND BIOLOGICAL NANOVECTORS

  • Conference paper
Photon-based Nanoscience and Nanobiotechnology

Abstract

The controlled synthesis of nanoparticles and nanotubes utilizing lasers is described with applications in multifunctional composites and biological nanovectors. Lasers offer unique advantages for the synthesis of novel nanomaterials such as single-walled carbon nanotubes and singlewalled carbon nanohorns, which form naturally within the laser vaporization plume under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ferrari, Cancer Nanotechnology: Opportunities and Challenges, Nat. Rev. Cancer 5(3), 161–171 (2005).

    Article  CAS  Google Scholar 

  2. N. W. S. Kam, M. O’Connell, J. A. Wisdom, and H. Dai, Carbon Nanotubes as Multifunctional Biological Transporters and Near-Infrared Agents for Selective Cancer Cell Destruction, PNAS 102(33), 11600–11605 (2005).

    Article  CAS  Google Scholar 

  3. D. B. Chrisey and G. K. Hubler (editors), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994).

    Google Scholar 

  4. D. B. Geohegan, Ch. 4, Ibid.

    Google Scholar 

  5. D. B. Geohegan, A. A. Puretzky, G. Duscher, and S. J. Pennycook, Time-Resolved Imaging of Gas Phase Nanoparticle Synthesis by Laser Ablation, Appl. Phys. Lett. 72, 2987–2989 (1998).

    Article  CAS  Google Scholar 

  6. D. B. Geohegan, A. A. Puretzky, G. Duscher, and S. J. Pennycook, Photoluminescence from Gas-Suspended SiOx Nanoparticles Synthesized by Laser Ablation, Appl. Phys. Lett.73, 438–440 (1998).

    Article  CAS  Google Scholar 

  7. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes, Science 273(5274), 483–487 (1996).

    Article  CAS  Google Scholar 

  8. A. M. Morales and C. M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science 279(5348), 208–211 (1998).

    Article  CAS  Google Scholar 

  9. X. Duan and C. M. Lieber, Synthesis of Compound Semiconductor Nanowires, Adv. Mater. 12(4) 298–302 (2000).

    Article  CAS  Google Scholar 

  10. A. A. Puretzky, D. B. Geohegan, X. Fan, and S. J. Pennycook, In situ Imaging and Spectroscopy of Single-Wall Carbon Nanotube Synthesis by Laser Vaporization, Appl. Phys. Lett. 76, 182–184 (2000).

    Article  CAS  Google Scholar 

  11. A. A. Puretzky, D. B. Geohegan, X. Fan, and S. J. Pennycook, Dynamics of Single-Wall Carbon Nanotube Synthesis by Laser Vaporization, Appl. Phys. A 70, 153–160 (2000).

    Article  CAS  Google Scholar 

  12. D. B. Geohegan, H. Schittenhelm, X. Fan and S. J. Pennycook, Condensed Phase Growth of Single-Wall Carbon Nanotubes from Laser Annealed Nanoparticulates, Appl. Phys. Lett. 78(21), 3307–3309 (2001).

    Article  CAS  Google Scholar 

  13. A. A. Puretzky, H. Schittenhelm, X. Fan, M. J. Lance, L. F. Allard, and D. B. Geohegan, Investigations of Single-Wall Carbon Nanotube Growth by Time-Restricted Laser Vaporization, Phys. Rev. B, Condens. Matter Mater. Phys. 65, 245425/1 (2002).

    CAS  Google Scholar 

  14. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, Nano-Aggregates of Single-Walled Graphitic Carbon Nano-Horns, Chem. Phys. Lett. 309, 165–170 (1999).

    Article  CAS  Google Scholar 

  15. D. Kasuya, M. Yudasaka, K. Takahashi, F. Kokai, and S. Iijima, Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism, J. Phys. Chem. B 106, 4947–4951 (2002).

    Article  CAS  Google Scholar 

  16. J. Zhu, D. Kase, K. Shiba, D. Kasuya, M. Yudasaka, and S. Lijima, Binary Nanomaterials Based on Nanocarbons: A Case for Probing Carbon Nanohorns’ Biorecognition Properties, Nano Letters, 3(8), 1033–1036 (2003).

    Article  CAS  Google Scholar 

  17. D. B. Geohegan, A. A. Puretzky, I. N. Ivanov, S. Jesse, G. Eres, and J. Y. Howe, In situ Growth Rate Measurements and Length Control During Chemical Vapor Deposition of Vertically Aligned Multiwall Carbon Nanotubes, Appl. Phys. Lett. 83(9), 1851–1853 (2003).

    Article  CAS  Google Scholar 

  18. A. A. Puretzky, D. B. Geohegan, S. Jesse, I. N. Ivanov, and G. Eres, In Situ Measurements and Modeling of Carbon Nanotube Array Growth Kinetics During Chemical Vapor Deposition, Appl. Phys. A, Mater. Sci. Process. 81(2), 223–240 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

GEOHEGAN, D.B. et al. (2006). LASER-BASED SYNTHESIS, DIAGNOSTICS, AND CONTROL OF SINGLE-WALLED CARBON NANOTUBES AND NANOHORNS FOR COMPOSITES AND BIOLOGICAL NANOVECTORS. In: Dubowski, J.J., Tanev, S. (eds) Photon-based Nanoscience and Nanobiotechnology. NATO Science Series, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5523-2_9

Download citation

Publish with us

Policies and ethics