Skip to main content

NONLINEAR OPTICAL PHYSICS AND APPLICATIONS OF THE PLASMONIC RESPONSE IN METAL NANOPARTICLES

  • Conference paper
Photon-based Nanoscience and Nanobiotechnology

Part of the book series: NATO Science Series ((NAII,volume 239))

Abstract

The optics of the surface plasmon resonance in the linear regime have been extensively studied and applied for almost a century. The explosive growth of interest in plasmonics, however, is focusing attention on novel plasmonic structures and nonlinear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Mie, “Beiträge zur Optik trüber Lösungen, speziell kolloidaler Metallösungen”, Annalen der Physik 25(3), 377–445 (1908).

    CAS  Google Scholar 

  2. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors”, Applied Physics Letters 73(26), 3815–3817 (1998).

    Article  CAS  Google Scholar 

  3. J. C. Maxwell Garnett, “Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions–II”, Philosophical Transactions of the Royal Society of London A 205, 237–288 (1906).

    Google Scholar 

  4. J. C. Maxwell Garnett, “Colours in Metal Glasses and in Metallic Films”, Philosophical Transactions of the Royal Society of London A 203, 385–420 (1906).

    Google Scholar 

  5. R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials”, Chemistry of Materials 8(8), 1807–1819 (1996).

    Article  CAS  Google Scholar 

  6. M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, “The Quantum-Mechanics of Larger Semiconductor Clusters (Quantum Dots)”, Annual Review of Physical Chemistry 41, 477–496 (1990).

    CAS  Google Scholar 

  7. B. N. J. Persson, “Polarizability of Small Spherical Metal Particles–Influence of the Matrix Environment”, Surface Science 281(1–2), 153–162 (1993).

    Article  CAS  Google Scholar 

  8. W. P. Halperin, “Quantum size effects in metal particles”, Reviews of Modern Physics 58(3), 533–606 (1986).

    Article  CAS  Google Scholar 

  9. Y. R. Shen, Nonlinear Optics (John Wiley and Sons, New York, 1984).

    Google Scholar 

  10. R. Antoine, M. Pellarin, B. Palpant, M. Broyer, B. Prevel, P. Galletto, P. F. Brevet, and H. H. Girault, “Surface plasmon enhanced second harmonic response from gold clusters embedded in an alumina matrix”, Journal of Applied Physics 84(8), 4532–4536 (1998).

    Article  CAS  Google Scholar 

  11. M. Brack, “The Physics of Simple Metal-Clusters–Self-Consistent Jellium Model and Semiclassical Approaches”, Reviews of Modern Physics 65(3), 677–732 (1993).

    Article  CAS  Google Scholar 

  12. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of Cluster Plasmon Resonances–Bulk Dielectric Functions and Chemical Interface Damping”, Physical Review B 48(24), 18178–18188 (1993).

    Article  Google Scholar 

  13. A. Kawabata and R. Kubo, “Electronic Properties of Fine Metallic Particles.2. Plasma Resonance Absorption”, Journal of the Physical Society of Japan 21(9), 1765-& (1966).

    Article  Google Scholar 

  14. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surfaceplasmon resonances in single metallic nanoparticles”, Physical Review Letters 80(19), 4249–4252 (1998).

    Article  CAS  Google Scholar 

  15. M. J. Weber, D. Milam, and W. L. Smith, “Non-Linear Refractive-Index of Glasses and Crystals”, Optical Engineering 17(5), 463–469 (1978).

    CAS  Google Scholar 

  16. D. Stroud and V. E. Wood, “Decoupling approximation for the nonlinear optical response of composite media”, Journal of the Optical Society of America B-Optical Physics 6(4), 778–786 (1989).

    CAS  Google Scholar 

  17. D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter”, Physical Review B 37(15), 8719–8724 (1988).

    Article  Google Scholar 

  18. F. Hache, D. Ricard, and C. Flytzanis, “Optical Nonlinearities of Small Metal Particles–Surface- Mediated Resonance and Quantum Size Effects”, Journal of the Optical Society of America B-Optical Physics 3(12), 1647–1655 (1986).

    CAS  Google Scholar 

  19. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The Optical Kerr Effect in Small Metal Particles and Metal Colloids–the Case of Gold”, Applied Physics A-Materials Science &Processing 47(4), 347–357 (1988).

    Article  Google Scholar 

  20. C. Flytzanis, F. Hache, D. Ricard, and P. Roussignol, “Nonlinear Optics in Composite- Materials”, Journal of the Optical Society of America B-Optical Physics 3(8), P93-& (1986).

    Google Scholar 

  21. R. H. Magruder, L. Yang, R. F. Haglund, C. W. White, R. Dorsinville, and R. R. Alfano, “Optical-Properties of Gold Nanocluster Composites Formed by Deep Ion-Implantation in Silica”, Applied Physics Letters 62(15), 1730–1732 (1993).

    Article  CAS  Google Scholar 

  22. K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold Nanoparticles Ion-Implanted in Glass with Enhanced Nonlinear-Optical Properties”, Journal of Applied Physics 75(6), 3075–3080 (1994).

    Article  CAS  Google Scholar 

  23. R. Rosei, “Temperature Modulation of Optical-Transitions Involving Fermi- Surface in Ag–Theory”, Physical Review B 10(2), 474–483 (1974).

    Article  CAS  Google Scholar 

  24. N. Del Fatti, F. Vallee, C. Flytzanis, Y. Hamanaka, and A. Nakamura, “Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles”, Chemical Physics 251(1–3), 215–226 (2000).

    Article  Google Scholar 

  25. R. Serna, C. N. Afonso, J. M. Ballesteros, A. Naudon, D. Babonneau, and A. K. Petford- Long, “Size, shape anisotropy, and distribution of Cu nanocrystals prepared by pulsed laser deposition”, Applied Surface Science 139, 1–5 (1999).

    Article  Google Scholar 

  26. P. Meakin and F. Family, “Structure And Kinetics Of Reaction-Limited Aggregation”, Physical Review A 38(4), 2110–2123 (1988).

    Article  CAS  Google Scholar 

  27. F. Family and P. Meakin, “Kinetics Of Droplet Growth-Processes–Simulations, Theory, And Experiments”, Physical Review A 40(7), 3836–3854 (1989).

    Article  CAS  Google Scholar 

  28. B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles”, Applied Physics B-Lasers and Optics 68(3), 419–423 (1999).

    Article  CAS  Google Scholar 

  29. A. Nakajima, T. Futatsugi, N. Horiguchi, and N. Yokoyama, “Formation of Sn nanocrystals in thin SiO2 film using low-energy ion implantation”, Applied Physics Letters 71(25), 3652–3654 (1997).

    Article  CAS  Google Scholar 

  30. S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction”, Physical Review Letters 86(20), 4688–4691 (2001).

    Article  CAS  Google Scholar 

  31. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics”, Nature 424(6950), 824–830 (2003).

    Article  CAS  Google Scholar 

  32. R. A. Weller, W. T. Ryle, A. T. Newton, M. D. McMahon, T. M. Miller, and R. H. Magruder, “A technique for producing ordered arrays of metallic nanoclusters by electroless deposition in focused ion beam patterns”, IEEE Transactions On Nanotechnology 2(3), 154–157 (2003).

    Article  Google Scholar 

  33. Y. Cui, M. T. Bjork, J. A. Liddle, C. Sonnichsen, B. Boussert, and A. P. Alivisatos, “Integration of colloidal nanocrystals into lithographically patterned devices”, Nano Letters 4(6), 1093–1098 (2004).

    Article  CAS  Google Scholar 

  34. A. B. Hmelo, M. D. McMahon, R. Lopez, R. H. I. Magruder, R. A. Weller, R. F. Haglund, Jr., and L. C. Feldman, “Ceramic Nanomaterials and nanotechnology II”, presented at the American Ceramic Society Annual Meeting, Nashville, TN, 2003. Published in Ceramic Nanomaterials and Nanotechnology II, eds. M. R. DeGuire, M. Hu, Y. Gogotsi and S. Lu, Ceramic Transactions 148, 68 (2003).

    Google Scholar 

  35. J. Bosbach, D. Martin, F. Stietz, T. Wenzel, and F. Trager, “Laser-based method for fabricating monodisperse metallic nanoparticles”, Applied Physics Letters 74(18), 2605–2607 (1999).

    Article  CAS  Google Scholar 

  36. J. M. Bennett, J. L. Stanford, and E. J. Ashley, “Optical constants of silver sulfide tarnish films”, Journal of the Optical Society of America 60(2), 224–232 (1970).

    CAS  Google Scholar 

  37. J. L. Stanford, “Determination of surface-film thickness from shift of optically excited surface plasma resonance”, Journal of the Optical Society of America 60(1), 49–53 (1970).

    Google Scholar 

  38. B. T. Reagor and J. D. Sinclair, “Tarnishing of silver by sulfur vapor: film characteristics and humidity effects”, Journal of the Electrochemical Society 128(3), 701–705 (1981).

    Article  CAS  Google Scholar 

  39. J. P. Franey, G. W. Kammlott, and T. E. Graedel, “The corrosion of silver by atmospheric sulfurous gases”, Corrosion Science 25(2), 133–143 (1985).

    Article  CAS  Google Scholar 

  40. T. E. Graedel, J. P. Franey, G. J. Gaultieri, G. W. Kammlott, and D. L. Malm, “On the mechanism of silver and copper sulfidation by atmospheric H2S and OCS”, Corrosion Science 25(12), 1163–1180 (1985).

    Article  CAS  Google Scholar 

  41. T. Brandt, W. Hoheisel, A. Iline, F. Stietz, and F. Träger, “Influence of molecular adsorbate layers on the optical spectra of small metal particles”, Applied Physics BLasers and Optics 65(6), 793–798 (1997).

    Article  CAS  Google Scholar 

  42. U. Kreibig, M. Gartz, and A. Hilger, “Mie resonances: Sensors for physical and chemical cluster interface properties”, Berichte der Bunsen-Gesellschaft fuer Physikalische Chemie 101(11), 1593–1604 (1997).

    CAS  Google Scholar 

  43. M. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund, “Rapid tarnishing of silver nanoparticles in ambient laboratory air”, Applied Physics B-Lasers And Optics 80(7), 915–921 (2005).

    Article  CAS  Google Scholar 

  44. R. L. Seliger, R. L. Kubena, R. D. Olney, J. W. Ward, and V. Wang, “High-resolution, ion-beam processes for microstructure fabrication”, Journal of Vacuum Science and Technology 16(6), 1610–1612 (1979).

    Article  CAS  Google Scholar 

  45. N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, “High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays”, Applied Physics Letters 82(8), 1281–1283 (2003).

    Article  CAS  Google Scholar 

  46. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign”, Applied Physics B (Lasers and Optics) 63(4), 381–384 (1996).

    CAS  Google Scholar 

  47. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals”, Physical Review B (Solid State) 6(12), 4370–4379 (1972).

    CAS  Google Scholar 

  48. Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2003–2004).

    Google Scholar 

  49. T. Götz, M. Buck, C. Dressler, F. Eisert, and F. Träger, “Optical Second-Harmonic Generation by Supported Metal-Clusters–Size and Shape Effects”, Applied Physics AMaterials Science &Processing 60(6), 607–612 (1995).

    Google Scholar 

  50. A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface 2nd-Harmonic Generation From Metal Island Films And Microlithographic Structures”, Physical Review B 24(2), 849–856 (1981).

    Article  CAS  Google Scholar 

  51. F. R. Aussenegg, A. Leitner, and H. Gold, “Optical 2nd-Harmonic Generation of Metal- Island Films”, Applied Physics A-Materials Science &Processing 60(2), 97–101 (1995).

    Article  Google Scholar 

  52. B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles”, Applied Physics B-Lasers and Optics 64(2), 269–272 (1997).

    Article  CAS  Google Scholar 

  53. E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles”, Journal of Chemical Physics 117(13), 5963–5966 (2002).

    Article  CAS  Google Scholar 

  54. R. C. Johnson, J. T. Li, J. T. Hupp, and G. C. Schatz, “Hyper-Rayleigh scattering studies of silver, copper, and platinum nanoparticle suspensions”, Chemical Physics Letters 356(5–6), 534–540 (2002).

    Article  CAS  Google Scholar 

  55. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer Verlag, Berlin-Heidelberg, 1995), Vol. 25.

    Google Scholar 

  56. R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond Nonlinear Optical-Response of a Cu-Silica Nanocluster Composite”, Optics Letters 18(5), 373–375 (1993).

    CAS  Google Scholar 

  57. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons, New York, 1984).

    Google Scholar 

  58. T. F. Heinz, “Second-order nonlinear optical effects at surfaces and interfaces”, in Nonlinear Surface Electromagnetic Phenomena, H.-E. Ponath and G. I. Stegeman, eds. (North-Holland, Amsterdam, 1991), pp. 353–416.

    Google Scholar 

  59. B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution thirdharmonic generation”, Physical Review Letters 83(21), 4421–4424 (1999).

    Article  CAS  Google Scholar 

  60. N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces”, Journal Of Optics A-Pure And Applied Optics 6(1), 26–28 (2004).

    Article  CAS  Google Scholar 

  61. M. D. McMahon, R. Lopez, R. F. Haglund, E. A. Ray, and P. H. Bunton, “Secondharmonic generation from arrays of symmetric gold nanoparticles”, Physical Review B 73(4), 041401 (2006).

    Article  CAS  Google Scholar 

  62. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material”, Physical Review Letters 83(20), 4045–4048 (1999).

    Article  CAS  Google Scholar 

  63. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry”, Physical Review 174(3), 813–822 (1968).

    Article  CAS  Google Scholar 

  64. J. W. Haus, N. Kalyaniwalla, R. Inguva, and C. M. Bowden, “Optical bistability in small metallic particle composites”, Journal of Applied Physics 65(4), 1420–1423 (1988).

    Article  Google Scholar 

  65. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, New York, 1991).

    Google Scholar 

  66. P. W. Smith and W. J. Tomlinson, “Nonlinear Optical Interfaces–Switching Behavior”, Ieee Journal of Quantum Electronics 20(1), 30–36 (1984).

    Article  Google Scholar 

  67. P. W. E. Smith and S. D. Benjamin, “Materials for All-Optical Devices”, Optical Engineering 34(1), 189–194 (1995).

    Article  CAS  Google Scholar 

  68. R. H. Magruder, R. F. Haglund, L. Yang, J. E. Wittig, and R. A. Zuhr, “Physical and Optical-Properties of Cu Nanoclusters Fabricated by Ion-Implantation in Fused-Silica”, Journal of Applied Physics 76(2), 708–715 (1994).

    Article  CAS  Google Scholar 

  69. L. Yang, K. Becker, F. M. Smith, R. H. Magruder, R. F. Haglund, R. Dorsinville, R. R. Alfano, and R. A. Zuhr, “Size Dependence of the 3rd-Order Susceptibility of Copper Nanoclusters Investigated by Four-Wave-Mixing”, Journal of the Optical Society of America B-Optical Physics 11(3), 457–461 (1994).

    CAS  Google Scholar 

  70. J. M. Ballesteros, J. Solis, R. Serna, and C. N. Afonso, “Nanocrystal size dependence of the third-order nonlinear optical response of Cu: Al2O3 thin films”, Applied Physics Letters 74(19), 2791–2793 (1999).

    Article  CAS  Google Scholar 

  71. K. Uchida, S. Kendko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles”, Journal of the Optical Society of America B-Optical Physics 11(7), 1236–1243 (1994).

    CAS  Google Scholar 

  72. J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. PetfordLong, D. H. Osborne, and R. F. Haglund, “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility”, Applied Physics Letters 71(17), 2445–2447 (1997).

    Article  CAS  Google Scholar 

  73. F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund, “Interaction of high-power laser light with silver nanocluster composite glasses”, Applied Physics Letters 69(20), 3101–3103 (1996).

    Article  CAS  Google Scholar 

  74. E. Valentin, H. Bernas, C. Ricolleau, and F. Creuzet, “Ion beam “photography”: Decoupling nucleation and growth of metal clusters in glass”, Physical Review Letters 86(1), 99–102 (2001).

    Article  CAS  Google Scholar 

  75. G. W. Arnold, G. DeMarchi, F. Gonella, P. Mazzoldi, A. Quaranta, G. Battaglin, M. Catalano, F. Garrido, and R. F. Haglund, “Formation of nonlinear optical waveguides by using ion-exchange and implantation techniques”, Nuclear Instruments &Methods in Physics Research Section B- Beam Interactions with Materials and Atoms 116(1–4), 507–510 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

HAGLUND, R.F. (2006). NONLINEAR OPTICAL PHYSICS AND APPLICATIONS OF THE PLASMONIC RESPONSE IN METAL NANOPARTICLES. In: Dubowski, J.J., Tanev, S. (eds) Photon-based Nanoscience and Nanobiotechnology. NATO Science Series, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5523-2_4

Download citation

Publish with us

Policies and ethics