Skip to main content

PHOTOPHYSICAL PROCESSES THAT ACTIVATE SELECTIVE CHANGES IN PHOTOSTRUCTURABLE GLASS CERAMIC MATERIAL PROPERTIES

  • Conference paper
Photon-based Nanoscience and Nanobiotechnology

Part of the book series: NATO Science Series ((NAII,volume 239))

Abstract

A series of experimental results are presented that investigate the photoactivated changes in photostructurable glass ceramic materials. The results show that by selectively controlling the incident photon irradiance and wavelength, it is possible to have a controllable effect on the material properties after the exposed material has undergone a specific thermal processing protocol. We present the results of optical transmission spectroscopy, X-ray diffraction spectroscopy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Loehman, “Glass-Ceramics for Hermetic Metal-Insulator Seals ” J. Met. 38, (1986) 42.

    Google Scholar 

  2. S.D. Stookey, “Chemical Machining of Photosensitive Glass,” Ind. Eng. Chem., Vol. 45, (1953) 115.

    Article  CAS  Google Scholar 

  3. W.W. Hansen, S.W. Janson, and H. Helvajian, “Direct-write UV Laser Microfabrication of 3D Structures in Lithium Aluminosilicate Glass”, Proc. SPIE 2991 (1997) pg. 104.

    Google Scholar 

  4. W. Hölland and G. Beall, “Glass-Ceramic Technology” (Am. Ceram. Soc. Press, Westerville OH) 2002.

    Google Scholar 

  5. P. W. McMillan “Glass Ceramics”, 2nd Edition (Academic Press, NY, NY) 1979.

    Google Scholar 

  6. A. Berezhnoi, “Glass-ceramics and Photositalls” English translation of Russian text, (Plenum Press, NY) 1970.

    Google Scholar 

  7. U. Kreibig, “Small Silver Particles in Photosensitive Glass: Their Nucleation and Growth,” Appl. Phys. 10 (1976) pg. 255.

    Article  CAS  Google Scholar 

  8. J.S. Stroud, “Photoionization of Ce3+ in Glass,” J. Chem. Phys. 35 (1961) pg. 844.

    Article  CAS  Google Scholar 

  9. M. Tashiro, N. Soga, and S. Sakka, “Behavior of Cerium Ions in Glasses Exposed to Xrays,” J. Ceram. Assoc. Japan 87 (1960) pg. 169.

    Google Scholar 

  10. G.A. Sycheva, “Nucleation Kinetics of Lithium Metasilicate in Photosensitive Lithium Aluminosilicate Glass,” Glass Phys. and Chem. 25 (1999) pg. 501.

    CAS  Google Scholar 

  11. F. Liebau, “Untersuchungen an Schicktsilikaten des Formeltyps Am(Si2O5)n. I. Die Kristallstruktur der Zimmertemperaturform des Li2Si2O5,” Acta Crystallogr. 14, (1961) pg. 389; R. Dupree, D. Holland and M. G. Mortuza, “A MAS-NMR Investigation of Lithium Silicate Glasses and Glass-Ceramics,” J. Non-Cryst. Solids 116 (1990) pg. 148.

    Article  CAS  Google Scholar 

  12. W. Hölland and G. Beall, “Glass-Ceramic Technology” (Am. Ceram. Soc. Press, Westerville OH, 2002), pg.7.

    Google Scholar 

  13. M. P. Borom, A. M. Turkalo and R. H. Doremus, “Strength and Microstructure in Lithium Disilicate Glass-Ceramics”, J. Am. Ceram. Soc. Vol. 58, (1975) 385.

    Article  CAS  Google Scholar 

  14. S.D. Stookey, “Chemical Machining of Photosensitive Glass,” Ind. Eng. Chem., Vol. 45, (1953) 115.

    Article  CAS  Google Scholar 

  15. A. Berezhnoi, “Glass-Ceramics and Photo-Sitalls,” (Plenum, New York, 1970).

    Google Scholar 

  16. P.D. Fuqua, D. P. Taylor, H. Helvajian, W. W. Hansen, and M. H. Abraham, “ A UV Direct-Write Appraoch for Formation of Embedded Structures in Photostructurable Glass-Ceramics” Mat. Res. Soc. Symp. Proc. Vol 624 (2000) pg. 79.

    Google Scholar 

  17. F.E. Livingston and H. Helvajian, True 3D Volumetric Patterning of Photostructurable Glass Using UV Laser Irradiation and Variable Exposure Processing: Fabrication of Meso-Scale Devices”, Proc. SPIE 4830 (2003) pg. 189.

    Article  CAS  Google Scholar 

  18. R. Reisfeld, “Spectra and Energy Transfer of Rare Earths in Inorganic Glasses” in Structure and Bonding, Vol. 13, J.D. Dunitz, P. Hemmerich, J.A. Ibers, C.K. Jorgensen, J.B. Neilands, R.S. Nyholm, D. Reinen and J.P. Williams, Eds. (Spring-Verlag, New York, 1973) p.53.

    Google Scholar 

  19. J.A. Duffy and G.O. Kyd, “Ultraviolet Absorption and Fluorescence Spectra of Cerium and the Effect of Glass Composition,” Phys. Chem. Glasses 37 (1996) pg. 45.

    CAS  Google Scholar 

  20. J.S. Stroud, “Photoionization of Ce3+ in Glass,” J. Chem. Phys. 35, (1961) pg. 844.

    Article  CAS  Google Scholar 

  21. S. D. Stookey, G. H. Beall and J. E. Pierson, “Full-color Photosensitive Glass”, J. Appl. Phys. 49, (1978) pg. 5114.

    Article  CAS  Google Scholar 

  22. S.D. Stookey, “Chemical Machining of Photosensitive Glass”, Industrial & Eng. Chem. Jan. (1953), 115

    Google Scholar 

  23. Foturan specification information guide, Schott Corporation Technical Glass Division literature F10/1999.

    Google Scholar 

  24. Ibid.

    Google Scholar 

  25. F. E. Livingston and H. Helvajian, “ Variable UV Laser-Exposure Processing of Photosensitive Glass-Ceramics: Maskless Micro- to Meso-Scale Structure Fabrication”, Appl. Phys. A. 81 (2005) pg. 1569.

    Article  CAS  Google Scholar 

  26. F. E. Livingston, P. M. Adams and H. Helvajian, “ Influence of Cerium on the Pulsed UV Nanosecond Laser Processing of Photostructurable Glass Ceramic Materials”, Appl. Surf. Sci. 247 (2005) pg. 526.

    Article  CAS  Google Scholar 

  27. U. Kreibig, “Small Silver Particles in Photosensitive Glass: Their Nucleation and Growth”, Appl. Phys. 10 (1976) pg. 255.

    Article  CAS  Google Scholar 

  28. Ibid

    Google Scholar 

  29. J. Bosbach, C. Hendrich, F. Stietz, T. A. Vartanyan, T. Wenzel and F. Traeger, “Laser Manipulation of the Size and Shape of Supported Metal Nanoparticles”, Proc. of SPIE 4274 (2001) pg. 1

    Article  CAS  Google Scholar 

  30. S. Kuper and M. Stuke, “UV-Excimer-Laser Ablation of Polymethylmethacrylate at 248 nm: Characterization of Incubation Sites with Fourier Transform IR- and UVSpectroscopy”, Appl. Phys. A: Solids Surf. 49 (1989) 211.

    Article  Google Scholar 

  31. S. Z. Shuja, A. F. M. Arif and B. S. Yilbas, “Laser Repetitive Pulse Heating of Steel Surface: A Material Response to Thermal Loading”, J. Manufact. Sci. and Eng., Vol. 124 (2002) 595.

    Article  Google Scholar 

  32. F. Verluise, V. Laude, Z.Cheng, Ch. Spielmann and P. Tournois, “Amplitude and Phase Control of Ultrashort Pulses by use of an Acousto-Optic Programmable Dispersive Filter : Pulse Compression and Shaping” Optics Letters, Vol. 25, n°8, (2000) p.575–577.

    CAS  Google Scholar 

  33. H. F. Dylla and S. T. Corneliussen, “Free-Electron Lasers Come of Age: A Quarter Century after their Invention, free-electron Lasers are Driving Worldwide Investigations”, Photonics Spectra, August 2005.

    Google Scholar 

  34. Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, A. E. Eiben, T. Back, M. Schoenauer and H-P Schwefel Eds. Lecture Notes in Computer Science Vol. 1498 (Springer Verlag, London, UK) 1998.

    Google Scholar 

  35. R. A. Bartels, T. C. Weinacht, S. R. Leone, H. C. Kapteyn and M. M. Murnane, “Nonresonant Control of Multimode Molecular Wave Packets at Room Temperature”, Phys. Rev. Lett. Vol. 88 (2002) 033001

    Article  CAS  Google Scholar 

  36. F.E. Livingston and H. Helvajian, “Development of New Laser Material Processing Technique Using Digitally-Scripted Genotype Sequencing and Electro-Optic Pulse Modulation” Proc. 6th Int. Conference on Laser Precision Microfabrication, LPM2005, Williamsburg, VA 2005.

    Google Scholar 

  37. Ibid

    Google Scholar 

  38. S. Janson, A. Huang, W. Hansen, and H. Helvajian, “Development of an Inspector Satellite Propulsion Module Using Photostructurable Glass/Ceramic Materials,” AIAA paper 2004–6701, presented at CANEUS 2004: Conference on Micro- Nanotechnologies, Monterey, CA, Nov. 1–5, 2004.

    Google Scholar 

  39. D. Sutton, S. Janson and H. Helvajian, Workshop Reports, Proceedings of the International Conference on Integrated Micro/Nanotechnology for Space Applications, Houston, TX, Oct. 30 to Nov. 3, 1995, The Aerospace Press, El Segundo, CA, 1995.

    Google Scholar 

  40. D. Hinkley, D. Williamson and T. George, “MEPSI on STS-113 Post Flight Report,” AIAA paper 2004–5847, Space 2004 conference, San Diego, CA, Sept. 28–30, 2004.

    Google Scholar 

  41. Ceramic Interconnect Initiative: http://www.imaps.org/cii

    Google Scholar 

  42. A. Huang, W. W. Hansen, S. W. Janson and H. Helvajian, “Development of a 100gm Class Inspector Satellite Using Photostructurable Glass/Ceramic Materials”, in Photon Processing in Microelectronics and Photonics, K. Sugioka, M. C. Gower, R. F. Haglund, Jr., A. Piqué, F. Träger, J. J. Dubowski, W. Hoving Eds. Proc. SPIE Vol. 4637 (2002) pg. 297.

    Article  Google Scholar 

  43. Henry Helvajian and Siegfried W. Janson, “The Fabrication of a 100 gm Co-Orbiting Satellite Assistant (COSA) Using Glass Ceramic Materials And 3-D Laser Processing Techniques,” Proceedings of the 9th International Micromachine/Nanotech Symposium, Tokyo, Japan, pp. 33–41, Nov. 13, 2003.

    Google Scholar 

  44. Analog Devices Datasheet “ADXRS150, ” Analog Devices, Norwood, MA, 2003. available online at http://www.analog.com/UploadedFiles/Data_Sheets/ 740673780ADXRS150_a.pdf

    Google Scholar 

  45. Hanada . K Sugioka. Y Gomi . H Yamaoka . O Otsuki . I Miyamoto and K Midorikawa. “Development of Practical System for Laser-Induced Plasma-Assisted Ablation (LIPAA) for Micromachining of Glass Materials” Applied Physics A (Materials Science Processing), Vol.A79, no.4–6, Sept.-Oct. 2004, pp.1001–3.

    Google Scholar 

  46. R.L. Jackson, T. H. Baum, T. T. Kodas, S. J. Ehrlich, P. B. Comita, “ Laser Deposition: Energetics and Chemical Kinetics” in Laser Microfabrication: Thin Film Processes and Lithography D. J. Ehrlich and J. Y. Tsao Eds., (Academic Press, NY, NY, 1989) pg. 385.

    Google Scholar 

  47. INKA1222210H data sheet, The Lee Company, Westbrook, CT, 2004, at: http://www.theleeco.com/PDF.nsf/bdb21d9b7952d46a85256a400071dc4c/fd40d7f2bf2 5608585256a9400546396/$FILE/inka1222210hb.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

LIVINGSTON, F., HELVAJIAN, H. (2006). PHOTOPHYSICAL PROCESSES THAT ACTIVATE SELECTIVE CHANGES IN PHOTOSTRUCTURABLE GLASS CERAMIC MATERIAL PROPERTIES. In: Dubowski, J.J., Tanev, S. (eds) Photon-based Nanoscience and Nanobiotechnology. NATO Science Series, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5523-2_10

Download citation

Publish with us

Policies and ethics