Advertisement

PHYTOREMEDIATION OF EXPLOSIVES

  • T. VANEK
  • A. GERTH
  • Z. VAKRIKOVA
  • R. PODLIPNA
  • P. SOUDEK
Part of the NATO Science Series: IV: Earth and Environmental Sciences book series (NAIV, volume 75)

Abstract

Results of experiments on Phytoremediation of Explosive and Energetic Compounds indicates that Phytoremediation is a promising technology for various levels of energetic compounds including TNT. This paper explores both the mechanisms and provides results of the work on phytoremediation.

Keywords

Nitroaromatic Compound Energetic Compound Annual Meeting Abstract Nitrate Ester Noncatalytic Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, F., and Hughes J. B., 2002, Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2,4,6-trinitrotoluene (TNT) toward biomass and humic acids, Environ. Sci. Technol. 36:4370–4381.CrossRefGoogle Scholar
  2. Bhadra, R., Spanggord, R. J., Wayment, D. G., Hughes, J. B., and Shanks, J. V., 1999a, Confirmation of conjugation processes during TNT metabolism by axenic plant roots, Environ. Sci. Technol. 33:3354–3361.CrossRefGoogle Scholar
  3. Bhadra, R., Wayment, D. G., Hughes, J. B., and Shanks, J. V., 1999b, Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systes of Myriophyllum aquaticum, Environ. Sci. Technol. 33:446–452.CrossRefGoogle Scholar
  4. Blehert, D. S., Fox, B. G., and Chambliss, G. H., 1999, Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases, J. Bacteriol. 181:6254–6263.Google Scholar
  5. Brown, K.S., 1995,. The green clean, Bioscience 45:579–582CrossRefGoogle Scholar
  6. Burken, J. G., Shanks, J. V. and Thompson, P. L., 2000, Phytoremediation and plant metabolism of explosives and nitroaromatic compounds, in: Biodegradation of Nitroaromatic Compounds and Explosives, J. C. Spain, J. B. Hughes, H. J. Knackmuss, eds., Lewis Publishers, Boca Raton, pp. 240–275.Google Scholar
  7. Chappell, J., 1997, Phytoremediation of TCE Using Populus, Status report prepared for the US EPA Technology Innovation Office under a National Network of Environmental Management Studies Fellowship, pp. 1–38.Google Scholar
  8. Courbot, M., Craciun, A., Heudiard, A., Kieffer, P., Roosens, N., Saumitou-Laprade, P., Willems, G., and Verbruggen, N., 2004, Identification of genes involved in Cd tolerance in Cd hyperaccumulation, COST Action 859, 1st WG2 Workshop - Exploiting “-omics” approaches in phytotechnologies, p. 11.Google Scholar
  9. Ekman, D. R., Wolfe, N.L., and Dean, J.F.D., 2005, Gene expression changes in Arabidopsis thaliana seedling roots exposed to the munition hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ. Sci. Technol. 39:6313–6320.CrossRefGoogle Scholar
  10. French, C. E., Rosser, S. J., Davies, G. J., Nicklin, S. and Bruce, N. C., 1999, Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase, Nature Biotechnol. 17:491–494.CrossRefGoogle Scholar
  11. Gerth, A., Hebner, A., and Thomas, H., 2003, Natural remediation of TNT-contaminated water and soil, Acta Biotechnol. 23:143–150.CrossRefGoogle Scholar
  12. Goel, A., Kumar, G., Payne, G. F., and Dube, S. K., 1997, Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin, Nature Biotechnol. 15:174–177.CrossRefGoogle Scholar
  13. Hannink, N. K., Rosser, S. J., and Bruce, N. C., 2002, Phytoremediation of explosives, Crit. Rev. Plant Sci. 21:511–538.CrossRefGoogle Scholar
  14. Harms, H. H., 1992, In-vitro systems for studying phytotoxicity and metabolic fate of pesticides and xenobiotics in plants. Pestic. Sci. 35:277–281.CrossRefGoogle Scholar
  15. Lachance, B., Robideux, P. Y., Hawari, J., Ampleman, G., Thiboutot, S., and Sunahara, G. I., 1999, Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro, Mutat. Res. 444:25–39.Google Scholar
  16. Larson, S. L., Jones, R. P., Escalon, L., and Parker, D., 1999, Classification of explosives transformation products in plant tissue, Environ. Toxicol. Chem. 18:1270–1276.CrossRefGoogle Scholar
  17. Ma, L. Q., Tu, C., Kennelley, E. D., and Komar, K. M., 2000, Phytoremediation of arsenic contaminated soils and wastes, Annual meetings abstracts, American Society of Agronomy, Minneapolis, Minn. November, pp. 5–9.Google Scholar
  18. Maestri, E., Restivo, F. M., Gulli, M., and Tassi, F., 1991, Glutamate-dehydrogenase regulation in callus-cultures of Nicotiana plumbaginifolia - effect of glucose feeding and carbon source starvation on the isoenzymatic pattern, Plant Cell Environ., 14:613–618.CrossRefGoogle Scholar
  19. Malcherek, K., Breuer, J., Schumphan, I., and Schmidt, B., 1998, Metabolism of 4- nitrophenol in asepticaly cultivated plants of the species wheat (Triticum aestivum L.), soybean (Glycine max L.), wild oat (Avena fatua L.) and corn cockle (Agrostemma githago L.). J. Plant Physiol. 153:192–199.Google Scholar
  20. Murashige, T., and Skoog, F., 1962, A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant. 15:473–497.CrossRefGoogle Scholar
  21. Nepovim, A., Hebner, A., Soudek, P., Gerth, A., Thomas, H., Smrcek, S., and Vanek, T., 2005, Phytoremediation of TNT by selected helophytes, Chemosphere 60:1454–1461.CrossRefGoogle Scholar
  22. Nepovím, A., Hubálek, M., Podlipná, R., Zeman, S., and Vaněk T., 2004, In vitro degradation of 2,4,6-trinitrotoluene by plant tissue culture of Solanum aviculare and Rheum palmatum,. Eng. Life Sci. 24:46–49.CrossRefGoogle Scholar
  23. Nepovím, A., and Vaněk T., 2005b, Soapwort oxophytodienoate reductase participates in the degradation of trinitrotoluene, in prep.Google Scholar
  24. Rivera, R., Medina, V. F., Larson, S. L., and McCutcheon, S. C., 1998, Phytotreatment of TNT-contaminated groundwater, J. Soil Contamin. 7:511–529.CrossRefGoogle Scholar
  25. Ro, K. S., Venugopal, A., Adrian, D. D., Constant, D., Qaisi, K., Valsaraj, K. T., Thibodeaux, L. J., and Roy D., 1996, Solubility of 2,4,6-trinitrotoluene (TNT) in water, J. Chem. Eng. Data 41:758–761.CrossRefGoogle Scholar
  26. Rodgers, J. D., and Bunce, N. J., 2001, Treatment methods for the remediation of nitroaromatic explosives, Wat. Res. 35:2101–2111.CrossRefGoogle Scholar
  27. Scheidemann, P., Klunk, A., Sens, C., and Werner, D., 1998, Species dependent uptake and tolerance of nitroaromatic compounds by higher plants, J. Plant Physiol., 152:242–247.Google Scholar
  28. Schwitzguebel, J. P., and Vaněk, T., 2003, Some fundamental advances for xenobiotic chemicals, in: Phytoremediation: Transformation and control of contaminants, S. C. McCutcheon, J. L. Schnoor, eds., John Wiley & Sons, Inc., Hoboken, pp. 123–157.Google Scholar
  29. Sens, C., Scheidemann, P., Klunk, A., and Werner D., 1998, Distribution of 14 C -TNT and derivatives in different biochemical compartments of Phaseolus vulgaris, Environ. Sci. Pollut. Res. 4:202–208.CrossRefGoogle Scholar
  30. Sens, C., Scheidemann, P., and Werner, D., 1999, The distribution of 14 C-TNT in different biochemical compartments of the monocotyledonous Triticum aestivum. Environ. Pollut. 104:113–119.CrossRefGoogle Scholar
  31. Snape, J. R., Walkley, N. A., Morby, A. P., Nicklin, S., and White G. F., 1997, Purification properties and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter, J. Bacteriol. 179:7796–7802.Google Scholar
  32. Snellinx, Z., Nepovim, A., Taghavi, S., Vangronsveld, J., Vanek, T., and van der Lelie, D., 2002, Biological remediation of explosives and related nitroaromatic compounds, Environ. Sci. Poll. Res. Int. 9:48–61.Google Scholar
  33. Urbanski, T., 1984, Chemistry and Technology of Explosives, Pergamon Press Ltd., Oxford.Google Scholar
  34. Vanderford, M, Shanks, J. V., and Hughes, J. B., 1997, Phytotransformation of trinitrotoluene (TNT) and distribution of metalic products in Myriophyllum aquaticum, Biotechnol. Lett. 19:277–280.CrossRefGoogle Scholar
  35. Vanek, T., Nepovim, A., Podlipna, R., and Vavrikova Z., 2005, Czech. Pat. Appl.Google Scholar
  36. Vanek, T., Nepovim, A., Podlipna, R., Zeman, S., and Vagner, M., 2003, Phytoremediation of selected explosives, Water Air Soil Pollut. Focus 3:259–267.Google Scholar
  37. Vila, M., Pascal-Lorber, S., Rathahao, E., Debrauwer, L., Canlet, C., and Laurent, F. 2005, Metabolism of [C-14]-2,4,6-trinitrotoluene in tobacco cell suspension cultures, Environ. Sci. Technol. 39:663–672.CrossRefGoogle Scholar
  38. Wang, C. J., Thiele, S., and Bollag, J. M., 2002, Interaction of 2,4,6-trinitrotoluene (TNT) and 4-amino-2,6-dinitrotoluene with humic monomers in the presence of oxidative enzymes. Arch. Environ. Contam. Toxicol. 42:1–8.CrossRefGoogle Scholar
  39. Wendt, T. M., Cornell, J. H., and Kaplan, A. M., 1978, Microbial degradation of glycerol nitrates, Appl. Environ. Microbiol. 36:693–699.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • T. VANEK
    • 1
  • A. GERTH
    • 2
  • Z. VAKRIKOVA
    • 1
  • R. PODLIPNA
    • 1
  • P. SOUDEK
    • 1
  1. 1.Department of Plant Tissue CulturesInstitute of Organic Chemistry and Biochemistry, AS CRPraha 6Czech Republic
  2. 2.BioPlanta GmbHDeutscher Platz 5LeipzigGermany

Personalised recommendations