Nitrogen and phosphorus budgets for a tropical watershed impacted by agricultural land use: Guayas, Ecuador

  • Mercy J. Borbor-Cordova
  • Elizabeth W. Boyer
  • William H. Mcdowell
  • Charles A. Hall


Large-scale changes in land use are occurring in many tropical regions, with significant impacts on nitrogen and phosphorus biogeochemistry. In this study we examine the relationships between land use, anthropogenic nutrient inputs, and riverine nutrient exports in a major agricultural watershed of the Pacific coast of South America, the Guayas River basin of Ecuador. We present comprehensive nutrient budgets for nitrogen (N) and phosphorous (P) for the Guayas River basin and 10 sub-watersheds. We quantify the four major anthropogenic nutrient fluxes into and out of the region: N and P fertilizer application, N fixation by leguminous crops, net import/export of N and P in agricultural products (food and feed), and atmospheric deposition. We also estimate inputs of N from biological N fixation in forests and of P from weathering sources in soils and bedrock. The sum of these sources represents net inputs of N and P to each watershed region. Overall, synthetic fertilizers are the largest input to the Guayas Basin for N (53%) and P (57%), and the largest outputs are N and P in crops. Losses of N and P in river export account for 14–38% of total N and P inputs, and there is significant accumulation of N and P, or unmeasured forms of N and P export, in most of the sub-basins. Nutrient balances are indicative of the sustainability of land use practices in a region, where a negative balance of N or P indicates nutrient depletion and subsequent loss of soil fertility, yield, and economic viability. Although the nutrient balance of the entire Guayas Basin is positive, there are negative or near zero balances in two sub-watersheds with extensive banana, coffee and permanent crops. In these basins, degradation of soil quality may be occurring due to these net nutrient losses. Our data show that nutrients are leaving the basin primarily as export crops, with riverine losses of nutrients smaller than crop exports. Nonetheless, there is a direct relationship between nutrient inputs and river outputs, suggesting that agricultural management practices in the basin may have direct impacts on N and P delivery to the highly productive Guayas estuary.

Key words

Agricultural watershed Anthropogenic Ecuador Fertilizers Food production Land use Nitrogen Phosphorus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. U.S. Department of Agriculture, Agricultural Research Service 2003. USDA National Nutrient Database for Standard Reference, Release 5. Nutrient Data Laboratory Home Page, Scholar
  2. Almanaque Electrónico Ecuatoriano (AEE) 1998. Sistemas de Información Geográfica para Aplicaciones Agropecuarias en el Ordenamiento de Territorio y Manejo Integral de Cuencas. Alianza Jatun Sacha/CDC-Ecuador, Escuela Superior Politécnica del Ejercito (ESPE), y Centro Internacional de mejoramiento del maiz y trigo (CIMMYT-Ecuador).Google Scholar
  3. Borbor M. 1999. A systems analysis of banana and shrimp production in Ecuador emphasizing the environmental impact on coastal ecosystems. M.S. thesis, State University of New York, College of Environmental Science and Forestry, Syracuse, NY, p. 73.Google Scholar
  4. Borbor V.J. 1965. Principales pastos cultivados en las Haciendas ribereñas del rio Guayas. B.S. Thesis. Department of Agricultural Engineering. Universidad Guayaquil, Ecuador.Google Scholar
  5. Boyer E.W. and Howarth R.W. (eds) 2002. The Nitrogen Cycle at Regional to Global Scales. Kluwer Academic Publishers, 518 pp.Google Scholar
  6. Boyer E.W., Goodale C.L., Jaworski N.A. and Howarth R.W. 2002. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biochemistry 57/58: 137–169.Google Scholar
  7. Bruijnzeel L.A. 1996. Predicting the impacts of land cover transformation in the humid tropics: the need for integrated research. In: Gash J.H.C., Nobre C.A., Roberts J.M. and Victoria R.L. (eds.), Amazonian Deforestation and Climate, John Wiley & Sons, New York, NY, USA, pp. 15–55.Google Scholar
  8. Caraco N.F. 1993. Disturbance of the phosphorus cycle: a case of indirect effects of human activity. Trends Ecol. Evolut. 7: 51–54.CrossRefGoogle Scholar
  9. Cole J.J., Peierls B.L., Caraco N.F. and Pace M.L. (1993). Nitrogen loading of rivers as a human-driven process. In: McDonnell M.J. and Pickett S.T.A. (eds), Humans as Components of Ecosystems: The Ecology of Subtle Human Effects and Populated Areas. Springer-Verlag, pp. 141–157.Google Scholar
  10. Comision Asesora Ambiental de la Presidencia de la Republica del Ecuador (CAAM) 1996. Desarrollo y problematica ambiental del area del Golfo de Guayaquil, 105–110.Google Scholar
  11. Comision de Estudios para el desarrollo de la Cuenca del Rio Guayas (CEDEGE) 2000. Presented by Jose M. Martin at the Conference of 25th anniversary of CEDEGE. CEDEGE y la planificacion de recursos hidraulicos en Ecuador.Google Scholar
  12. Comision de Estudios para el desarrollo de la Cuenca del Rio Guayas (CEDEGE) 2001. Plan integral de gestion socio-ambiental de la Cuenca del Guayas y Peninsula de Santa Elena. Resumen Ejecutivo, 149 pp.Google Scholar
  13. Cleveland C.C., Townsend A.R., Schimel D.S., Fisher H., Howarth R.W., Hedin L.O., Perakis S.S., Latty E.F., Von Fischer J.C., Elseroad A. and Wasson M.F. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem. Cycles 13: 623–645.CrossRefGoogle Scholar
  14. Cronan C.S., Piampiano J.T. and Patterson H.H. 1999. Influence of land use and hydrology on exports of carbon and nitrogen in a Maine river basin. J. Environ. Quality 28: 953–961.Google Scholar
  15. Downing J.A., McClain R.T., Melack J.M., Elser J., Rabalis N.N., Lewis W.M. Jr., Turner R.E., Corredor S.D., Yanez-Arancibia A., Kopaska J.A. and Howarth R.W. 1999. The impact of accelerating land use change on the N-Cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46: 109–148.Google Scholar
  16. ECLAC, Economic Comission for Latin American and the Caribbean 1999. Statistical Yearbook for Latin America and the Caribbean 1998, Chile. ISSN 10114-0697.Google Scholar
  17. Falconi-Benitez Fander 2000. An integrated assessment of changes of land-use in Ecuador. Paper presented in the Advances in Energy Studies, Porto Venere 2000.Google Scholar
  18. Food Agriculture Organization 2002. FAOSTAT, statistical database. Scholar
  19. Filoso S., Martinelli L.A., Williams M.R., Lara L.B., Krusche A., Ballester M.V., Victoria R. and de Camargo P.B. 2003. Land use and nitrogen export in the Piracicaba River basin, Southeast Brazil. Biogeochemistry 65: 275–294.CrossRefGoogle Scholar
  20. Galloway J.N., Schlesinger W.H., Levy H. II, Michaels A. and Schnoor J.L. 1995. Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochem. Cycles 9: 235–252.CrossRefGoogle Scholar
  21. Hall Charles A., Ko J.-Y., Lee C.-L. and Wang H.Q. 1998. Ricardo Lives: The Inverse Relation of Resource Exploitation Intensity and Efficiency in Costa Rican Agriculture and its Relation to Sustainable Development. Advances in Energy Studies Conference, Musis, Roma.Google Scholar
  22. Hall C.A.S. and Hall M.H.P. 1993. The efficiency of land and energy use in tropical economies and agriculture. Agricult., Ecosyst. Environ. 46: 1–30.CrossRefGoogle Scholar
  23. Hallock J.L. Jr., Tharakan P.J., Hall C.A.S., Jefferson Michael and Wu W. 2004. Forecasting the limits to the availability and diversity of global conventional oil supply. Energy 30(10): 1673–1696.CrossRefGoogle Scholar
  24. Harper D.M. and Stewart W.D.P. 1987. The effects of land use upon water chemistry, particularly nutrient enrichment, in shallow lowland lakes: comparative studies of three lochs in Scotland. Hydrobiologia 148: 211–229.CrossRefGoogle Scholar
  25. Howarth R.W., Billen G., Swanney D., Townsed A., Jaworski N., Lajtha K., Downing J.A., Elmgreen R., Caraco N., Jordan T., Berendese F., Freney J., Kudeyarov V., Murdoch P. and Zhao-Liang Z. 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainage to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35: 75–139.CrossRefGoogle Scholar
  26. Houghton R.A. 1994. The worldwide extent of land-use change. BioScience 44: 305–313.CrossRefGoogle Scholar
  27. Tiessen H., Chacon P. and Cuevas E. 1994. Phosphorus and nitrogen status in soils and vegetation along a toposequence of Dystrophic Rainforests on the Upper Rio Negro. Oecologia 99: 145–150.CrossRefGoogle Scholar
  28. Instituto Nacional de Hidrologia y Meteorologia (INAMHI), Anuarios meteorológicos. Instituto Nacional de Estadísticas y Censos (INEC) 2001. VI Censo Nacional de Población y Vivienda del 2000.Google Scholar
  29. Instituto Nacional de Estadísticas y Censos (INEC) 2002. III Censo Nacional Agropecuario 2001.Google Scholar
  30. Instituto Nacional de Investigaciones Agropecuarias (INIAP) 2000. Costos de las tecnologias de los principales cultivos del Ecuador, 124 pp.Google Scholar
  31. Jaworski N.A., Groffman P.M., Keller A.A. and Prager J.C. 1992. A watershed nitrogen and phosphorus balance: the Upper Potomac River Basin. Estuaries 15: 83–95.CrossRefGoogle Scholar
  32. de Koning G.H.F. 1999. Spatially explicit analysis of land use change: a case study for Ecuador. Thesis. Wageningen University Agricultural University, 172 pp.Google Scholar
  33. Lacerda L.D., Kremer H.H., Kjerfve B., Salomons W., Marshall J.I. and Crossland C.J. 2002. South American Basins: LOICZ Global Change Assessment and Synthesis of River Watershed — Coastal Sea Interaction and Human Dimensions. LOICZ Reports & Studies No. 21, Volume 1: ii+95 pp, Volume 2: ii+127 pp, LOICZ, Texel, The Netherlands.Google Scholar
  34. Lewis W.M. Jr., Melack J.M., McDowell W.H., McClain M. and Richey J.E. (1999). Nitrogen yields from undisturbed watersheds in the Americas. In: New Perspectives on Nitrogen Cycling in the Temperate and Tropical Americas, pp. 149–162.Google Scholar
  35. McDowell W.H. and Asbury C.E. 1994. Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnol. Oceanogr. 39: 111–125.CrossRefGoogle Scholar
  36. Merriam J., McDowell W.H. and Currie W.S. 1996. A high-temperature catalytic oxidation technique for determining total dissolved nitrogen. Soil Sci. Soc. Am. J. 60: 1050–1055.CrossRefGoogle Scholar
  37. McKee L. and Eyre B.D. 2000. Nitrogen and phosphorus budget for the subtropical Richmond river catchment, Australia. Biogeochemistry 50: 207–239.CrossRefGoogle Scholar
  38. Ojima D.S., Galvin K.A. and Turner B.L. II 1994. The global impact of land-use change. BioScience 44: 300–304.CrossRefGoogle Scholar
  39. Organizacion Panamerica para la Salud (OPS) — Division de Salud y Ambiente 1994. Manual de evaluacion y manejo de sustancias toxicas en aguas superficiales. Seccion 3: Evaluacion preliminaria rapida, Lima, Peru.Google Scholar
  40. Pierzynski G.M., Hettiarachi G.M. and Koelliker J.K., 1997. Methods for assessing the Impacts of Soil Degradation on Water Quality. Methods for assessment of soil degradation, pp. 513–545.Google Scholar
  41. Skole D.L., Chomentowski W.H., Salas W.A. and Nobre A.D. 1994. Physical and human dimensions of deforestation in Amazonia. BioScience 44: 314–324.CrossRefGoogle Scholar
  42. Smaling E.M.A. and Oenema 1997. Estimating nutrient balances in agro-ecosystems at different spatial scales. Methods for assessment of soil degradation. pp. 229–250.Google Scholar
  43. Southgate D. and Whitaker M. 1994. Economic Progress and the Environment: One Developing Country’s Policy Crisis. Oxford University Press.Google Scholar
  44. Sibbesen E. 1989. Phosphorus cycling in intensive agriculture with special reference to countries in the temperate zone of Western Europe. In: Tiessen H. (ed.), Phosphorus cycles in terrestrial and aquatic ecosystems. Regional workshop 1: Europe, SCOPE/UNEP Proceeding, University of Saskatchewan, Saskatoon, Canada, pp. 112–122.Google Scholar
  45. Sibbesen E. and Rutger Metzger A. 1995. Phosphorus balance in the European Agriculture. In: Tiessen, H. (ed.), Phosphorus in the Global Environment: Transfers, cycles and management. SCOPE Vol 54, pp. 43–59.Google Scholar
  46. Stoorvogel J.J. 1993. Optimizing land use distribution to minimize nutrient depletion: a case study for the Atlantic Zone of Costa Rica. Geoderma 60: 277–292.CrossRefGoogle Scholar
  47. Twilley R., Gottfried R., Rivera-Monroy V., Zhang W., Montano-Armijos M., Bodero A., 1998. An approach and preliminary model of integrating ecological and economic constraints of environmental quality in the Guayas River estuary, Ecuador. Environmental Science and Policy, 271–288.Google Scholar
  48. USGS 2003. United States Geological Survey, Elevation derivative database. Online URL: Scholar
  49. Valiela I. and Bowen J.L. 2002. Nitrogen sources to watersheds and estuaries: role of land cover mosaics and losses within watersheds. Environ. Pollut. 118: 239–248.PubMedCrossRefGoogle Scholar
  50. Vallis I. and Keating B.A. 1997. Uptake and loss of fertilizer and soil nitrogen in sugarcane crops. Proc. Aust. Soc. Sugar Cane Tech.Google Scholar
  51. Van Breemen N., Boyer E.W., Goodale C.L., Jaworski N.A., Paustian K., Seitzinger S.P., Lajtha K., Mayer B., Van Dam D., Howarth R.W., Nadelhoffer K.J., Eve M. and Billen G. 2002. Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern USA. Biogeochemistry 57/58: 267–293.CrossRefGoogle Scholar
  52. Van den Bosch H., de Jager A. and Vlaming J. 1988. Monitoring nutrient flows and economic performance in African farming systems (NUTMON) II. Tool development. Agric., Ecosyst. Environ. 71: 49–62.CrossRefGoogle Scholar
  53. Van Ittersum M.K., Rabbinge R. and Van Latesteijn H.C. 1998. Exploratory land use studies and their role in strategic policy making. Agricult. Syst. 58(3): 309–330.CrossRefGoogle Scholar
  54. Velthof G.L., Oenema O., Postma R. and van Beusichem M.L. 1997. Effects of type and amount of applied fertilizer on nitrous oxide fluxes from intensively manged grassland. Nutrient Cycling Agroecosyst. 46: 257–267.CrossRefGoogle Scholar
  55. Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W. and Tilman D.G. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7(3): 737–750.Google Scholar
  56. Webb B.W., Phillips J.M. and Walling D.E. 2000. A new approach to deriving ‘best estimate’ chemical fluxes for rivers draining the LOIS study area. Sci. Total Environ. 251/252: 45–54.CrossRefGoogle Scholar
  57. Yanez-Arancibia A & Lara-Dominguez A.L. 1998. Mangrove Ecosystems in Tropical America: Structure, Function, and Management. EPOMEX Scientific Series 3, University of Campeche, Mexico.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Mercy J. Borbor-Cordova
    • 1
  • Elizabeth W. Boyer
    • 2
  • William H. Mcdowell
    • 3
  • Charles A. Hall
    • 1
  1. 1.College of Environmental Science and ForestryState University of New YorkSyracuseUSA
  2. 2.Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of Natural ResourcesUniversity of New HampshireDurhamUSA

Personalised recommendations