STRUCTURAL AND METHODICAL FEATURES OF THE INSTALLATION FOR INVESTIGATIONS OF HYDROGEN-SORPTION CHARACTERISTICS OF CARBON NANOMATERIALS AND THEIR COMPOSITES

  • A.F. SAVENKO
  • V.A. BOGOLEPOV
  • K.A. MELESHEVICH
  • S. Yu. ZAGINAICHENKO
  • D.V. SCHUR
  • M.V. LOTOTSKY
  • V.K. PISHUK
  • L.O. TESLENKO
  • V.V. SKOROKHOD
Part of the NATO Security through Science Series A: Chemistry and Biology book series

Abstract

The laboratory setup for investigations of hydrogen capacity of materials has been created at the Institute for Problems of Materials Science of NAS of Ukraine. It completely meets the modern requirements for the experimental equipment of this class. The setup design makes it possible to investigate hydrogen-sorption characteristics of different materials with low specific density, including nanocarbon structures and composites on their basis, by the volumetric method in the pressure range between 0.01 and 16 MPa H2 and at temperatures from 77 K to 1273 K. The setup provides a sufficient degree of accuracy. It is equipped with a metal-hydride unit for hydrogen storage/compression. The design and service conditions of this device are discussed.

Keywords

Nickel Crystallization Welding Manifold Palladium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schlapbach L. Materials Research Bulletin. - 2002. - V. 27. - P. 675.Google Scholar
  2. 2.
    Shigematsu K., Abe K., Mitani M., Tanaka K. Chem. Express. - 1992. -V.7, N.12. - P. 37.Google Scholar
  3. 3.
    Hirsch A.H. The chemistry of the fullerenes. - Stuttgart: Georg. Thieme Verlag. - 1994. - 203 p.Google Scholar
  4. 4.
    Lobach A.S., Tarasov B.P., Shul’ga Yu.M., Perov A.A., Stepanov A.N. The D2 reaction with palladium fulleride C60Pd4,9 // Izv. RAN., Ser. khim. - 1996. - N1. - P. 483-484 (in Russian).Google Scholar
  5. 5.
    Drelinkiewicz A., Byszewski P., Bielanski A. Catalytic hydrogenation of C60 fullerene // React. Kinet. Catal. Lett. - 1996. - V.59, N.1. - P. 19–27.CrossRefGoogle Scholar
  6. 6.
    Nozu R., Matsumoto O. Hydrogenation of C60 by electrolysis of KOH-H2O solution // J. Electrochem. Soc. - 1996. - V. 143, N.6. - P. 1919–1923.CrossRefGoogle Scholar
  7. 7.
    Gol’dshleger N.F., Moravsky A.P. Hydrides of the fullerenes // Uspekhi khimii. - 1997. - V. 66, N 4. - P. 353–375 (in Russian).Google Scholar
  8. 8.
    Tarasov B.P., Fokin V.N., Moravsky A.P., Shul’ga Yu.M., Yartys’ V.A., Schur D.V. Promotion of fullerene hydride synthesis by intermetallic compounds. In: Proceed. of 12th World Hydrogen Energy Conference. - Buenos Aires, Argentina. - 1998. - V. 2. - P. 1221–1230.Google Scholar
  9. 9.
    Dresselhaus M.S., Williams K.A., Eklund P.C. Hydrogen absorption in carbon materials // MRS Bulletin. - 1999. - V.24, N. 11. - P. 45–50.Google Scholar
  10. 10.
    Trefilov V.I., Schur D.V., Tarasov B.P., Shul’ga Yu.M., Chernogorenko A.B., Pishuk V.K., Zaginaychenko S.Yu. Fullerenes is a basis of future materials. - Kiev: Izd. ADEF. - 2001. - 148 p.Google Scholar
  11. 11.
    A Multiyear Plan for the Hydrogen R&D Program. Rationale, Structure, and Technology Roadmaps, Office of Power Delivery, Office of Power Technologies, Energy Efficiency and Renewable Energy, U.S. Department of Energy, August 1999.Google Scholar
  12. 12.
    Tarasov B.P., Gol’dshleger N.F., Moravsky A.P. Hydrogen-containing compounds of carbon nanostructures // Usp. khim. - 2001. - V. 70, N2. - P.149–166 (in Russian).Google Scholar
  13. 13.
    Dantzer P. Hydrogen in Metals III. Properties and Applications.- Ed. by H. Wipf, Springer-Verlag. - 1997. 1997–279 p.Google Scholar
  14. 14.
    Sandrock G., Suda S., Schlapbach L. Applications.- Hydrogen in Intermetallic Compounds. II. Surface and Dynamic Properties, Applications. - Ed. by L. Schlapbach, Springer-Verlag. - 1992. 1992–197 p.Google Scholar
  15. 15.
    Sandrock G. J. Alloys and Compounds. - 1999. - V. 293–295. - P. 877.CrossRefGoogle Scholar
  16. 16.
    Bowman R.C. (Jr.), Fultz B. Metallic hydrides I: Hydrogen storage and other gas applications.- Materials Research Bulletin. - 2002. - V. 27, N. 9. - P. 688.Google Scholar
  17. 17.
    Joubert J.-M., Latroche M., Percheron-Guegan A. Metallic hydrides II: Materials for electrochemical storage. - Materials Research Bulletin. - 2002. - V. 27, N. 9. - P. 694.Google Scholar
  18. 18.
    Akiba E., Okada M. Metallic hydrides III: Body-centered cubic solid solution alloys.- Materials Research Bulletin. - 2002. - V. 27, N. 9. - P. 699.Google Scholar
  19. 19.
    Massalski T.B. Binary Alloy Phase Diagrams. American Society for Metals. Metals Park. Ohio. - 1986, 1987. - V. 1, 2. - 2224 p.Google Scholar
  20. 20.
    Hansen M., Anderko K. Structures of binary alloys. - M.: Metallurgizdat, 1962. - V. 1, 2. - 1188 p. (in Russian).Google Scholar
  21. 21.
    Shank F.A. Structures of binary alloys. - M.: Metallurgiya, 1973. - 760 p. (in Russian).Google Scholar
  22. 22.
    Savitskiy E.M., Terekhova V.F. Constitution diagrams of lanthan alloy with cerium and with calcium // Zhurnal neorganicheskoy khimii. - 1958. - V. 3, N 3. - P. 756–762 (in Russian).Google Scholar
  23. 23.
    Klimenko A.V., Seunjens J., Miller L.L., Beaudry B.J., Jacobson R.A., Gschneidner K.A. (Jr.) Structure of LaNi2,286 and the La-Ni system from LaNi1,75 to LaNi2,50 // J. Less-Common Met. - 1988. - V. 144. - P. 133–141.CrossRefGoogle Scholar
  24. 24.
    Pan Y.Y., Nash P., La-Ni (Lanthanum-Nickel)”, Phase Diagrams of Binary Nickel Alloys, P. Nash, Ed., ASM International, Materials Park, OH. - 1991. - P. 183–188.Google Scholar
  25. 25.
    Zhang D., Tang J., Gschneidner K.A. (Jr.) A redetermination of the La-Ni phase diagram from LaNi to LaNi5 (50-83,3 at.% Ni) // J. Less-Common Met. - 1991. - V. 169. - P. 45–53.CrossRefGoogle Scholar
  26. 26.
    Buschow K.H.J., van Mal H.H. Phase relations and hydrogen absorption in the lanthanum-nickel system // J. Less-Common Met. - 1973. - V. 29. - P. 203.CrossRefGoogle Scholar
  27. 27.
    Xinghang, Wang Zhigum, Lin Guoguan, Zhang Weijing, Pan Shuning // Proc. 61th, Nat. Symp. Phase Diagr., Shenyang. Now. - 1990. - V. 20-24. - P. 125–126.Google Scholar
  28. 28.
    Vogel R., Iandelli A., Rolla L. Z. Metallkd. - 1947. - V. 38. - P. 97–103 (in German).Google Scholar
  29. 29.
    WiHenberg L.J., Grove G.R. U.S. At. Energy Comm., MLM-1184. - 1963. - V. 10–11; MLM-1199. - 1963. - P. 6–7.Google Scholar
  30. 30.
    Gebhart I.M., Etter D.E. III, Tucker P.A. “Proc. 6th RaRe Earth Res. Conf.”, 1967. - P. 452–457.Google Scholar
  31. 31.
    Gscheidner K.A., Verkode M.E. Document IS - RIC-7, 27–29 (1974).Google Scholar
  32. 32.
    Duisemaliev U.K. Cerium solubility in nickel and mechanical properties in nickel-cerium alloys // Zhurnal neorganicheskoy khimii. - 1964. - V. 9. - N 3. - P. 755–756.Google Scholar
  33. 33.
    Kocherzhinsky Yu.A., Shilkin E.A., Vasilenko V.I. Apparatus for differential thermal analysis with thermovapour sensor up to 2200°C. // Diagrammy sostoyaniya metallicheskikh system. - M.: Nauka, 1971. - P. 245–249.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • A.F. SAVENKO
    • 1
  • V.A. BOGOLEPOV
    • 1
  • K.A. MELESHEVICH
    • 1
  • S. Yu. ZAGINAICHENKO
    • 1
  • D.V. SCHUR
    • 1
  • M.V. LOTOTSKY
    • 1
  • V.K. PISHUK
    • 1
  • L.O. TESLENKO
    • 1
  • V.V. SKOROKHOD
    • 1
  1. 1.Institute for Problems of Materials Science of NAS of UkraineKyivUkraine

Personalised recommendations