Skip to main content

A comparison of the European Water Framework Directive physical typology and RIVPACS-type models as alternative methods of establishing reference conditions for benthic macroinvertebrates

  • Chapter
The Ecological Status of European Rivers: Evaluation and Intercalibration of Assessment Methods

Part of the book series: Developments in Hydrobiology ((DIHY,volume 188))

Abstract

The EU Water Framework Directive requires European Union Member States to establish ‘type-specific biological reference conditions’ for streams and rivers. Types can be defined by using either a fixed typology (System-A), defined by ecoregions and categories of altitude, catchment area and geology, or by means of an alternative characterisation (System-B) that can use a variety of physical and chemical factors. Several European countries also have existing RIVPACS-type models that give site (rather than stream type) specific predictions of benthic macroinvertebrate communities. In this paper we compare the Water Framework Directive (WFD) System-A physical typology and three existing European multivariate RIVPACS-type models as alternative methods of establishing reference conditions. This work is carried out in Great Britain — using RIVPACS, Sweden — using SWEPACSRI and the Czech Republic — using PERLA. We found that in all three countries, all seasons and season combinations, and for all biotic indices tested, RIVPACS-type models were more effective (lower standard deviations of O/E ratios) than models based solely on the WFD System-A variables or null models (based on a single expectation for all sites). We also investigated the explanatory power of whole groups of WFD System-A variables and RIVPACS-type model variables, and the explanatory power of individual variables. We found that variables used in the RIVPACS-type models were often better correlates of macroinvertebrate community variation than the WFD System-A variables. We conclude that this is primarily because while the latter use very broad categories of map-derived variables, the former are based on continuous variables selected for their ecological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armitage, P. & J. Blackburn, 1985. Chironomidae in the Pennine stream system receiving mine drainage and organic enrichment. Hydrobiologia 121: 165–172.

    Article  Google Scholar 

  • Clarke, R. T., J. F. Wright & M. T. Furse, 2003. RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling 160: 219–233.

    Article  Google Scholar 

  • Council of the European Communities., 2000. Directive 2000/60/EC, Establishing a Framework for Community Action in the Field of Water Policy. European Commission PE-CONS 3639/1/100 Rev 1, Luxembourg.

    Google Scholar 

  • CSN 75 7716, 1998. Water quality, biological analysis, determination of saprobic index. Czech Technical State Standard. Czech Standards Institute, Prague, 174 pp.

    Google Scholar 

  • Dawson, F. H., D. D. Hornby & J. H. Hilton, 2002. A method for the automated extraction of environmental variables to help the classification of rivers in Britain. Aquatic Conservation: Marine and Freshwater Ecosystems 12: 391–403.

    Article  Google Scholar 

  • Extence, C. A., D. M. Balbi & R. P. Chadd, 1999. River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. Regulated Rivers Research and Management 15: 543–574.

    Article  Google Scholar 

  • Feminella, J. W., 2000. Correspondence between stream macroinvertebrate assemblages and 4 ecoregions of the southeastern USA. Journal of the North American Benthological Society 19: 442–461.

    Article  Google Scholar 

  • Furse, M. T., 2000. The application of RIVPACS procedures in headwater streams — an extensive and important national resource. In Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), Assessing the Biological Quality of Fresh Waters. Freshwater Biological Association, Ambleside, 79–91.

    Google Scholar 

  • Hawkins, C. P., R. H. Norris, J. N. Hogue & J. W. Feminella, 2000. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications 10: 1456–1477.

    Article  Google Scholar 

  • Hawkins, C. P. & M. R. Vinson, 2000. Weak correspondence between landscape classifications and stream macroinvertebrate assemblages: implications for bioassessment. Journal of the North American Benthological Society 19: 501–517.

    Article  Google Scholar 

  • Heino, J., T. Muotka & R. Paavola, 2003. Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. Journal of Animal Ecology 72: 425–434.

    Article  Google Scholar 

  • Illies, J., 1978. Limnofauna Europaea. Gustav Fisher Verlag, Stuttgart.

    Google Scholar 

  • Johnson, R. K. & L. Sandin, 2001. Development of a Prediction and Classification System for Lake (Littoral) and Stream (Riffle) Macroinvertebrate Communities. Stencil. Department of Environmental Assessment, SLU, Uppsala.

    Google Scholar 

  • Johnson, R. K., K. Aagaard, K. J. Aanes, N. Friberg, G. M. Gislason, H. Lax & L. Sandin, 2001. Macroinvertebrates. In Skriver, J. (ed), Biological Monitoring in Nordic Rivers and Lakes. TemaNord Environment 513: 43–52.

    Google Scholar 

  • Kokeš, J., S. Zahrádková, D. Němejcová, J. Hodovský, J. Jarkovský & T. Soldán, 2006. The PERLA system in the Czech Republic: a multivariate approach for assessing the ecological status of running waters. Hydrobiologia 566: 343–354.

    Article  Google Scholar 

  • Logan, P. & M. Furse, 2002. Preparing for the European Water Framework Directive — making the links between habitat and aquatic biota. Aquatic Conservation: Marine and Freshwater Ecosystems 12: 425–437.

    Article  Google Scholar 

  • Marvan, P., 1969. Primechania k primeneniu statisticheskich metodov po opredeleniu saprobnosti. Symposium SEV Voprosy saprobnosti, Zivohost, 19–43.

    Google Scholar 

  • Moss, D., M. T. Furse, J. F. Wright & P. D. Armitage, 1987. The prediction of the macro-invertebrate fauna of unpolluted running-water sites in Great Britain using environmental data. Freshwater Biology 17: 41–52.

    Article  Google Scholar 

  • National Water Council., 1981. River Quality: The 1980 Survey and Future Outlook. National Water Council, London.

    Google Scholar 

  • Pantle, E. & H. Buck, 1955. Die biologische Uberwachung der Gewasser und die Darstellung der Ergebnisse. Gas und Wasserfach. 96: 604.

    Google Scholar 

  • Rabeni, C. F. & K. E. Doisy, 2000. Correspondence of stream benthic invertebrate assemblages to regional classification schemes in Missouri. Journal of the North American Benthological Society 19: 419–428.

    Article  Google Scholar 

  • Rosenberg, D. M., T. B. Reynoldson & V. H. Resh, 2000. Establishing reference conditions in the Fraser River catchment, British Columbia, Canada, using the BEAST (Benthic Assessment of SedimenT) predictive model. In Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), Assessing the Biological Quality of Fresh Waters. Freshwater Biological Association, Ambleside, 181–194.

    Google Scholar 

  • Sandin, L. & R. K. Johnson, 2000. Ecoregions and benthic macroinvertebrate assemblages of Swedish streams. Journal of the North American Benthological Society 19: 462–474.

    Article  Google Scholar 

  • Simpson, J. C. & R. H. Norris, 2000. Biological assessment of river quality: development of AusRivAS models and outputs. In Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), Assessing the Biological Quality of Fresh Waters. Freshwater Biological Association, Ambleside, 125–142.

    Google Scholar 

  • Sweeting, R., 2001. Classification of ecological status of lakes and rivers — biological elements in the classification. In Back, S. & K. Karttunnen (eds), Classification of Ecological Status of Lakes and Rivers. TemaNord Environment 2001:584, Nordic Council of Ministers, Copenhagen, 9.

    Google Scholar 

  • ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 2002. CANOCO Reference Manual and CanoDraw for User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power (Ithaca NY, USA), 500 pp.

    Google Scholar 

  • Van Sickle, J. & R. M. Hughes, 2000. Classification strengths of ecoregions, catchments, and geographical clusters for aquatic vertebrates in Oregon. Journal of the North American Benthological Society 19: 370–384.

    Article  Google Scholar 

  • Van Sickle, J., C. P. Hawkins, D. P. Larsen & A. H. Herlihy, 2005. A null model for the expected macroinvertebrate assemblage in streams. Journal of the North American Benthological Society 24: 178–191.

    Article  Google Scholar 

  • Verdonschot, P. F. M. & R. C. Nijboer, 2004. Testing the European stream typology of the Water Framework Directive for macroinvertebrates. Hydrobiologia 516: 35–54.

    Article  Google Scholar 

  • Waite, I. R., A. T. Herlihy, D. P. Larsen & D. J. Klemm, 2000. Comparing strengths of geographic and non-geographic classifications of stream benthic macroinvertebrates in the Mid-Atlantic Highlands, USA. Journal of the North American Benthological Society 19: 429–441.

    Article  Google Scholar 

  • Wilander, A., R. K. Johnson & W. Goedkoop, 2003. Riksinventering 2000: En synoptisk studie av vattenkemi och bottenfauna i svenksa sjöar och vattendrag. Department of Environmental Assessment, Swedish University of Agricultural Sciences, Uppsala, Report 2003, 1 pp.

    Google Scholar 

  • Wright, J. F., D. Moss, P. D. Armitage & M. T. Furse, 1984. A preliminary classification of running water sites in Great Britain based on macro-invertebrate species and prediction of community type using environmental data. Freshwater Biology 14: 221–256.

    Article  Google Scholar 

  • Wright, J. F., 2000. An introduction to RIVPACS. In Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), Assessing the Biological Quality of Fresh Waters. Freshwater Biological Association, Ambleside, 1–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Davy-Bowker, J., Clarke, R.T., Johnson, R.K., Kokes, J., Murphy, J.F., Zahrádková, S. (2006). A comparison of the European Water Framework Directive physical typology and RIVPACS-type models as alternative methods of establishing reference conditions for benthic macroinvertebrates. In: Furse, M.T., Hering, D., Brabec, K., Buffagni, A., Sandin, L., Verdonschot, P.F.M. (eds) The Ecological Status of European Rivers: Evaluation and Intercalibration of Assessment Methods. Developments in Hydrobiology, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5493-8_7

Download citation

Publish with us

Policies and ethics