Biological quality metrics: their variability and appropriate scale for assessing Streams

  • Gunta Springe
  • Leonard Sandin
  • Agrita Briede
  • Agnija Skuja
Part of the Developments in Hydrobiology book series (DIHY, volume 188)


The concept of spatial scale is at the research frontier in ecology, and although focus has been placed on trying to determine the role of spatial scale in structuring communities, there still is a further need to standardize which organism groups are to be used at which scale and under which circumstances in environmental assessment. This paper contributes to the understanding of the variability at different spatial scales (reach, stream, river basin) of metrics characterizing communities of different biological quality elements (macrophytes, fishes, macroinvertebrates and benthic diatoms) as defined by the Water Framework Directive. For this purpose, high-quality reaches from medium-sized lowland streams of Latvia, Ecoregion 15 (Baltic) were sampled using a nested hierarchical sampling design: (river basin → stream → reach). The variability of metrics within the different groups of biological quality elements confirmed that large-bodied organisms (macrophytes and fish) were less variable than small-bodied organisms (macroinvertebrates and benthic diatoms) at reach, stream and river basin scales. Single metrics of biological quality elements had the largest variation at the reach scale compared with stream and basin scales. There were no significant correlations between biodiversity indices of the different organism groups. The correlation between diversity indices (Shannon’s and Simpson’s) of the biological quality eleme (macrophytes, fish, benthic macroinvertebrates and benthic diatoms) and a number of measured environmental variables varied among the different organism groups. Relationships between diversity indices and environmental factors were established for all groups of biological quality elements. Our results showed that metrics of macrophytes and fish could be used for assessing ecological quality at the river basin scale, whereas metrics of macroinvertebrates and benthic diatoms were most appropriate at a smaller scale.

Key words

biological quality elements Water Framework Directive metric variability spatial scale medium-sized lowland streams high quality sites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous, 1992. Standard Methods for Examination of Water and Wastewater. 18th edn. APHA, AWWA, WEF.Google Scholar
  2. Anonymous., 2000. European Commission Directive 2000/60/ EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal L 327, 22/12/2000 P: 0001–0073.Google Scholar
  3. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. EPA 841-B-99-002. 2nd edn. US Environmental Protection Agency, Office of Water, Washington DC.Google Scholar
  4. Bis, B., A. Zdanovic & M. Zalewski, 2000. Effects of catchment properties on hydrochemistry, habitat complexity and invertebrate structure in a lowland river. Hydrobiologia 422/423: 369.CrossRefGoogle Scholar
  5. CEMAGREF, 1982. Etude des méthodes biologiques d’appréciation quantitative de la qualitédes eaux. Rapport Q. E. Lyon A. F. Bassin Rhōne-Méditéranneé-Corse, 218.Google Scholar
  6. Dawson, F. H., J. R. Newman, M. J. Gravelle, K. J. Rouen & P. Henville, 1999. Assessment of the Trophic Status of Rivers Using Macrophytes — Evaluation of the Mean Trophic Rank. R&D Technical Report E39. Environment Agency, Bristol, 177 pp.Google Scholar
  7. Dauwalter, D. C. & J. R. Jackson, 2004. A provisional fish index of biotic integrity for assessing Ouachita Mountains streams in Arkansas, U.S.A. Environmental Monitoring Assessment 91(1–3): 27–57.CrossRefGoogle Scholar
  8. Dell’Uomo, A., 1996. Assessment of water quality of an Apennine river as a pilot study. In Whitton, B. A. & T. Rott (eds), Use of Algae for Monitoring Rivers. II Institute fü r Botanik, Univerität Innsbruck, 65–73.Google Scholar
  9. Descy, J. P., 1979. A new approach to water quality estimation using diatoms. Nova Hedwigia 64: 305–323.Google Scholar
  10. Descy, J. P. & M. Coste, 1991. A test of methods for assessing water quality based on diatoms. Verhandlungen der Internationalischen Vereinigung fü r Theoretische und Angewandte Limnologie 24: 2112–2116.Google Scholar
  11. Ellenberg, H., 1979. Die Zeigerwerte der Gewässpflanzen Mitteleuropas. Scripta Geobotanica 9: 1–122.Google Scholar
  12. Frenzel, S. A. & R. B. Swanson, 1996. Relations of Fish Community Composition to Environmental Variables in Streams of Central Nebraska, USA. Environmental Management 20(5): 689–705.PubMedCrossRefGoogle Scholar
  13. Furse M., D. Hering, O. Moog, P. Verdonschot, R. K. Johnson, K. Brabec, K. Gritzalis, A. Buffagni, P. Pinto, N. Friberg, J. Murray-Bligh, J. Kokes, R. Alber, P. Usseglio-Polatera, P. Haase, R. Sweeting, B. Bis, K. Szoszkiewicz, H. Soszka, G. Springe, F. Sporka & I. Krno, 2006. The STAR project: context, objectives and approaches. Hydrobiologia 566: 3–29.CrossRefGoogle Scholar
  14. Friedrich, G., D. Chapman & A. Beim, 1996. The use of biological material. In Chapman, D. (ed.), Water Quality Assessments. A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. Published on behalf of UNESCO, WHO and UNEP by Chapman & Hall, London, 175–242.Google Scholar
  15. Gantes, H. P. & A. S. Caro, 2001. Environmental heterogeneity and spatial distribution of macrophytes in plain streams. Aquatic Botany 70(3): 225–236.CrossRefGoogle Scholar
  16. Gaston, K. J. & T. M. Blackburn, 1999. A critique for macroecology. Oikos 84: 353–368.CrossRefGoogle Scholar
  17. Gibbons, J. D., 1985. Nonparametric Statistical Inference, 2nd edn. M. Dekker.Google Scholar
  18. Gorman, O. T. & J. R. Karr, 1978. Habitat structure and stream fish communities. Ecology 59: 507–515.CrossRefGoogle Scholar
  19. Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.CrossRefGoogle Scholar
  20. Haury, J., M. C. Peltre, M. Tremolieres, J. Barbe, G. Thiebaut, I. Bernez, H. Daniel, P. Chatenet, S. Muller, A. Dutartre, C. Laplace-Treyture, A. Cazaubon & E. Lambert-Servien, 2002. A method involving macrophytes to assess water trophy and organic pollution: the Macrophyte Biological Index for Rivers (IBMR) — application to different types of rivers and pollutions. Proc. 11th ewrs internat’l. symp. aquatic weeds, Moliets et Maa, France, (eds), A. Dutartre & M.-H. Montel, 247–250.Google Scholar
  21. Heino, J., T. Muotka, R. Paavoal, H. Hämäläinen & E. Koskemmiemi, 2002. Correspondence between regional delineations and spatial patterns in macroinvertebrate assemblages of boreal headwater streams. Journal of the North American Benthological Society 21: 397–413.CrossRefGoogle Scholar
  22. Hering, D., O. Moog, L. Sandin & P. F. M. Verdonschot, 2004. Overview and application of the AQEM assessment system. Hydrobiologia 516: 1–21.CrossRefGoogle Scholar
  23. Hillebrand, H., R. Waterman, R. Karez & U. G. Berninger, 2001. Differences in species richness patterns between unicellular and multicellular organisms. Oekologia 126(1): 114–124.Google Scholar
  24. Holmes, N. T. H., J. R. Newman, S. Chadd, K. J. Rouen, L. Saint & F. H. Dawson, 1999. Mean Trophic Rank: A Users Manual. R&D Technical Report No. E38. Environment Agency, Bristol, UK.Google Scholar
  25. Hughes, R. M., S. G. Paulsen & J. L. Stoddard, 2000. EMAP-Surface Waters: a national, multiassemblage, probability survey of ecological integrity. Hydrobiologia 423: 429–443.CrossRefGoogle Scholar
  26. Jalas, J., 1955. Hemerobe und hemerochore Pflanzenarten — ein terminologischer Reformversuch. Acta Societatis pro Fauna et Flora Fennica 72(11): 1–15.Google Scholar
  27. Jansons, V., N. Vagstad, R. Sudars, J. Deelstra, I. Dzalbe & D. Kirsteina, 2002. Nutrient losses from point and diffuse agricultural sources in Latvia. Landbauforschnung Volkenrode. 1(52): 9–17.Google Scholar
  28. Johnson, R. K., 1995. The indicator concept in freshwater biomonitoring Thienemann lecture. In Cranston, P. S. (ed.), Chironomids — from Genes to Ecosystems, Proceedings of the 12th International Symposium on Chironomidae, Canberra, Australia. CSIRO, Melbourne, 11–27.Google Scholar
  29. Johnson, R. K., 1998. Spatial-temporal variability of temperate lake macroinvertebrate communities: detection of impact. Ecological Applications 8: 61–70.CrossRefGoogle Scholar
  30. Jowett, I. G. & J. Richardson, 2003. Fish communities in New Zealand rivers and their relationship to environmental variables. New Zealand Journal of Marine and Freshwater Research 37: 347–366.CrossRefGoogle Scholar
  31. Joy, M. K. & R. G. Death, 2004. Application of the index of biotic integrity methodology to New Zealand freshwater fish communities. Environmental Management 34(3): 415–28.PubMedCrossRefGoogle Scholar
  32. Kelly, M. G. & B. A. Whitton, 1995. The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.CrossRefGoogle Scholar
  33. Kesminas, V. & T. Virbickas, 2000. Application of an adapted index of biotic integrity to rivers of Lithuania. Hydrobiologia 422/423: 257–270.CrossRefGoogle Scholar
  34. Krebs, C. J., 1999. Ecological Methodology (2nd edn). Addison Wesley Longman, Inc, Menlo Park, California, 620 pp.Google Scholar
  35. Kwandrans, J., P. Eloranta, B. Kawecka & K. Wojtan, 1998. Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. Journal of Applied Phycology 10(2): 193–201.CrossRefGoogle Scholar
  36. Lammert, M. & J. D. Allan, 1999. Assessing the biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environmental Management 23: 257–270.PubMedCrossRefGoogle Scholar
  37. Lecointe, C., M. Coste & J. Prygiel, 1993. ‘Omnidia’ Software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269/270: 509–513.CrossRefGoogle Scholar
  38. Leclercq, L. & B. Maquet, 1987. Deux nouveaux indices chimique et diatomique de qualité d’eau courante. Application au Samson et à ses affluents (bassin de la Meuse belge). Comparaison avec d’autres indices chimiques, bioceènotiques et diatomiques. Institut Royal des Sciences Naturelles de Belgique, document de travail 28: 113Google Scholar
  39. Legendre, P. & M. J. Fortin, 1989. Spatial pattern and ecological analysis. Vegetation 80: 107–138.CrossRefGoogle Scholar
  40. Leland, H. V., 1995. Distribution of benthic diatoms in the Yakima River Basin, Washington, in relation to geology, land use, and other environmental factors. Canadian Journal of Fisheries and Aquatic Sciences 52: 1108–1129.CrossRefGoogle Scholar
  41. Leland, H. V. & S. V. Fend, 1998. Benthic invertebrate distributions in the San Joaquin River, California, in relation to physical and chemical factors. Canadian Journal of Fisheries and Aquatic Sciences 55: 1051–1067.CrossRefGoogle Scholar
  42. Leland, H. V. & S. D. Porter, 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biology 44: 279–301.CrossRefGoogle Scholar
  43. Lenat, D. R. & D. L. Penrose, 1996. History of the EPT taxa richness metric. Bulletin North American Benthological Society 13: 305–307.Google Scholar
  44. Li, J., A. Herlihy, W. Gerth, P. Kaufmann, S. Gregory, S. Urquhart & D. P. Larsen, 2001. Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biology 46: 87–97.CrossRefGoogle Scholar
  45. Loreau, M., S. Naeem, P. Inchusti, J. Bengtsson, J. P. Grime & A. Hector, 2001. Biodiversity and ecosystem functioning: current knowledge and future challenge. Science 294: 804–808.PubMedCrossRefGoogle Scholar
  46. McCune, B. & M. J. Mefford, 1999. PC-ORD. Multivariate Analysis of Ecological Data, version 4. MjM Software Design, Gleneden Beach, Oregon, USA.Google Scholar
  47. Mackay, S. J., A. H. Arthington, M. J. Kennard & J. Pusey, 2003. Spatial variation in the distribution and abundance of submersed macrophytes in an Australian subtropical river. Aquatic Botany 77: 169–186.CrossRefGoogle Scholar
  48. Mastrorillo, S., F. Dauba, T. Oberdorff, J. F. Guégan & S. Lek, 1998. Predicting local fish species richness in the Garonne river basin. Comptes Rendus de l’Académie des Sciences de Paris 321: 423–428.Google Scholar
  49. McCormik, F. H. & R. M. Hughes, 1998. Aquatic vertebrates. In Lazorchak, J. L., D. J. Klemm & D. V. Peck (eds), Environmental Monitoring and Assessment Program-Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadable Streams. EPA/620/R-94/004F US EPA, Washington DC: 161–182.Google Scholar
  50. Meador, M. R. & R. M. Goldstein, 2003. Assessing water quality at large geographic scales: relations among land use, water physicochemistry, riparian condition, and fish community structure. Environmental Management 31(4): 504–517.PubMedCrossRefGoogle Scholar
  51. Muotka, T., J. Heino, R. Paavola & J. Soininen, 2004. Large scale biodiversity patterns of boreal stream communities. In Eloranta, P. (ed.), Inland and Coastal Waters of Finland 116–119.Google Scholar
  52. Minshall, G. W., 1984. Aquatic insect-substratum relationships. In Resh, V. H. & D. M. Rosenberg (eds), The ecology of aquatic insects. Praeger Scientific, New York, USA: 358–400.Google Scholar
  53. Pan, Y., R. J. Stevenson, B. H. Hill, P. R. Kaufmann & A. T. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in Mid-Atlantic streams, USA. Journal of Applied Phycology 35: 460–468.CrossRefGoogle Scholar
  54. Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understand and prediction in stream ecology. Journal of North American Benthological Society 16: 391–409.CrossRefGoogle Scholar
  55. Prygiel, J. & M. Coste, 1993. The assessment of water quality in the Artois-Picardie water basin (France) by the use of diatom indices. Hydrobiologia 302: 179–188.Google Scholar
  56. Potapova, M. & D. F. Charles, 2002. Benthic diatoms in USA Rivers: distributions along spatial and environmental gradients. Journal of Biogeography 29: 167–187.CrossRefGoogle Scholar
  57. Raven, P. J., P. Fox, M. Everald, N. T. H. Holmes & F. H. Dawson, 1997. River Habitat Survey: a new method for classifying rivers according to their habitat quality. In Boon, P. J. & D. L. Howell (eds), Freshwater Quality: Defining the Indefinable? The Stationery Office, Edinburgh, 215–234.Google Scholar
  58. Raven, P. J., N. T. H. Holmes, F. H. Dawson & M. Everald, 1998. Quality assessment using River Habitat Survey data. Aquatic Conservation: Marine And Freshwater Ecosystems: 477–499.Google Scholar
  59. Reynoldson, T. B., R. H. Norris, V. H. Resh, K. E. Day & D. M. Rosenberg, 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society 16: 833–852.CrossRefGoogle Scholar
  60. Richards, C., G. E. Host & J. W. Arthur, 1993. Identification of predominant environmental factors structuring stream macroinvertebrate communities within a large agricultural catchment. Freshwater Biology 29: 285–294.CrossRefGoogle Scholar
  61. Richards, C., R. J. Haro, L. B. Johnston & G. E. Host, 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology 37: 219–230.CrossRefGoogle Scholar
  62. Rivers Ouse, Ure and Wharfe Macrophyte Surveys, 2001. Report for Yorkshire Services Ltd by Bullen Consultants.Google Scholar
  63. Rott, E. (ed.), 1999. Indikationslisten für Aufwuchsalgen in Österreichischen fliessgewässern. Teil 2: Trophienindikation sowie geochemische Prä ferenz, taxonomische und toxikologische Anmerkungen Bundesministerium für Land-und Forstwirschaft, Wasserwirtschaftskataster Wien.Google Scholar
  64. Sandin, L., 2001. Spatial and temporal variability of stream benthic macrroinvertebrates. Implications for environmental assessment. Doctoral thesis, Silvestria 172, Swedish University of Agricultural Sciences.Google Scholar
  65. Sandin, L. & R. K. Johnson, 2000a. Spatial scale of benthic macroinvertebrate communities in Swedish streams: variation partitioning using partial Canonical Correspondence Analysis. Verhandlungen der Internationalischen Vereinigung für Theoretische und Angewandte Limnologie 27: 382–383.Google Scholar
  66. Sandin, L. & R. K. Johnson, 2000b. Ecoregions and benthic macroinvertebrates in Swedish streams. Journal of North American Benthological Society 19: 462–474.CrossRefGoogle Scholar
  67. Sandin, L. & R. K. Johnson, 2000c. Statistical power of selected indicator metrics using macroinvertebrates for assessing acidification and eutrophication of running waters. Hydrobiologia 422/423: 233–243.CrossRefGoogle Scholar
  68. Sandin, L. & R. K. Johnson, 2004. Local, landscape and regional factors structuring benthic macroinvertebrate assemblages in Swedish streams. Landscape Ecology 19: 501–514.CrossRefGoogle Scholar
  69. Sládeček, V., 1986. Diatoms as indicators of organic pollution. Acta Hydrochimica et Hydrobiologica 14: 555–566.CrossRefGoogle Scholar
  70. Soininen, J., 2003. Heterogeneity of benthic diatom communities in different spatial scales and current velocities in a turbid river. Archiv für Hydrobiologie 156: 551–564.CrossRefGoogle Scholar
  71. Soininen, J., 2004. Benthic Diatom Community Structure in Boreal Streams. Distrubution Patterns Along Environmental And Spatial Gradients. Academic dissertation in limnology, Helsinki 46 pp.Google Scholar
  72. Soininen, J. & K. Könönen, 2004. Comparative study of monitoring South-Finnish rivers and streams using macroinvertebrate and benthic diatom community structure. Aquatic Ecology 38(1): 63–75.CrossRefGoogle Scholar
  73. SPSS for Windows Rel. 12.0.1., 2004. Chicago: SPSS Inc.Google Scholar
  74. Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic Stream Ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7(4): 307–360.CrossRefGoogle Scholar
  75. Steinberg, C. & S. Schiefele, 1988. Biological indication of trophy and pollution of running waters. Zeitschrift für Wasser-Abwasser Forschung 21: 227–234.Google Scholar
  76. Tonn, W. M., J. J. Magnuson, M. Rask & J. Toivonen, 1990. Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. American Naturalist 136: 345–375.CrossRefGoogle Scholar
  77. Thompson, J. N., O. J. Reichman, P. J. Morin, G. A. Polis, M. E. Power, R. W. Sterner, C. A. Couch, L. Gough, R. Holt, D. U. Hooper, F. Keesing, C. R. Lovell, B. T. Milne, M. C. Molles, D. W. Roberts & S. Y. Strauss, 2001. Frontiers of Ecology. Bioscience 5: 15–24.CrossRefGoogle Scholar
  78. Tremp, H. & A. Kohler, 1995. The usefulness of macrophyte monitoring-systems, exemplified on eutrophication and acidification of running waters. Acta botanica Gallica 142: 541–550.Google Scholar
  79. Van Sickle, J. & R. M. Hughes, 2000. Classification strengths of ecoregions, catchments and geographical clusters for aquatic vertebrates in Oregon. Journal of the North American Benthological Society 19(3): 370–384.CrossRefGoogle Scholar
  80. Vis, C., C. Hudon & R. Carignan, 2003. An evaluation of approaches used to determine the distribution and biomass of emergent and submerged aquatic macrophytes over larger spatial scale. Aquatic Botany 77: 187–201.CrossRefGoogle Scholar
  81. Ward, J. V. & K. Tockner, 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46: 807–819.CrossRefGoogle Scholar
  82. Westlake, D. F., 1975. Macrophytes. In Whitton, B. A. (ed.), River Ecology: Studies in Ecology Vol. 2. University of California Press, Berkeley, 106–128.Google Scholar
  83. Whittier, T. R., R. M. Hughes & D. P. Larsen, 1988. Correspondence between ecoregions and spatial patterns in stream ecosystems in Oregon. Canadian Journal of Fisheries and Aquatic Sciences 45: 1264–1278.Google Scholar
  84. Zelinka, M. & P. Marvan, 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. Archiv für Hydrobioliogie 57: 389–407.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Gunta Springe
    • 1
  • Leonard Sandin
    • 2
  • Agrita Briede
    • 1
  • Agnija Skuja
    • 1
  1. 1.Institute of BiologyUniversity of LatviaSalaspilsLatvia
  2. 2.Department of Environmental AssessmentSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations