Skip to main content

Improvement of fibre and composites for new markets

  • Chapter
Improvement of Crop Plants for Industrial End Uses

Abstract

Plant fibres have decisive advantages compared with synthetic fibres. One great advantage of plant fibres is their optimized strength to weight ratio. Others are their better workability as a result of optimum fibre length and cell wall thickness, their high anisotropic qualities and their good ion exchange capacity. The natural products are readily biodegradable and renewable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous (2006) Injection Moulding Compounding IMC. Krauss-Maffei Kunststofftechnik GmbH, München, Germany

    Google Scholar 

  • Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol. 137: 983–997

    Article  PubMed  CAS  Google Scholar 

  • Awano T, Takabe K, Fujita M (2002) Xylan deposition on secondary wall of Fagus crenata fiber. Protoplasma 219: 106–115

    Article  PubMed  CAS  Google Scholar 

  • Azizi Samir MAS, Chazeau L, Alloin F, Cavaille JY, Dufresne A, Sanchez JY (2005) POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochimica Acta 50: 3897–3903

    Article  CAS  Google Scholar 

  • Bismarck A, Aranberri-Askargorta I, Springer J (2002) Surface characterization of Flax, Hemp and Cellulose Fibers; Surface Properties and the Water Uptake Behavior. Polymer Comp 23: 872–894

    Article  CAS  Google Scholar 

  • Boudet AM (1998) A new view of lignification. Trends Plant Sci 3: 67–71

    Article  Google Scholar 

  • Bouton S, Leboeuf E, Mouille G, Leydecker Marie T, Talbotec J, Granier F, Lahaye M, Hofte H, Truong Hoai N (2002) Quasimodol encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14: 2577–2590

    Article  PubMed  CAS  Google Scholar 

  • Burgert I, Fruehmann K, Keckes J, Fratzl P, Stanzl Tschegg S (2004) Structure-function relationships of four compression wood types: micromechanical properties at the tissue and fibre level. Trees 18: 480–485

    Article  CAS  Google Scholar 

  • Carpita N, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: Searching for the genes that define structure, architecture and dynamics. Plant Mol Biol. 47: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Crônier D, Monties B, Chabbert B (2005) Structure and chemical composition of bast fibres isolated from developing hemp stems. J Agric Food Chem. 53: 8279–8289

    Article  PubMed  CAS  Google Scholar 

  • Day A, Addi M, Kim, W, David H, Bert F, Mesnage P, Ronaldo C, Chabbert B, Neutelings G, Hawkins S (2005) ESTs from the fibre-bearing stem tissue of flax (linum usitatissimum L.): Expression analysis of sequences related to cell wall development. Plant Biol. 7: 23–32

    Article  PubMed  CAS  Google Scholar 

  • Day A, Ruel K, Neutelings G, Crônier D, David H, Hawkins S, Chabbert B (2005) Lignification in the flax stem: evidence for an unusual lignin in bast fibres. Planta 222: 234–245

    Article  PubMed  CAS  Google Scholar 

  • Dill-Langer G, Cruz-Hidalgo R, Kun, F, Moreno Y, Aicher S, Herrmann HJ (2003) Size dependency of tension strength in natural fibre composites. Physica A: Stat Mecan Appl. 325: 547–560

    Article  Google Scholar 

  • Emons AMC, Kieft, H (1994) Winding threads around plant cells: Applications of the geometrical model for microfibril deposition. Protoplasma. 180: 59–69

    Article  Google Scholar 

  • Faik A, Price Nicholas J, Raikhel Natasha V, Keegstra K (2002) An Arabidopsis gene encoding an alpha-xylosyltransferase involved in xyloglucan biosynthesis. Proc Natl Acad Sci USA 99: 7797–7802.

    Article  PubMed  CAS  Google Scholar 

  • Fan T, Sun B, Gu J, Zhang D, Lau LWM (2005) Biomorphic A12O3 fibers synthesized using cotton as bio-templates. Scripta Materialia 53: 893–897

    Article  CAS  Google Scholar 

  • Felby C, L.S. P, Nielsen BR (1997) Enhanced Auto Adhesion of Wood Fibers Using Phenol Oxidases. Holzforschung 51: 281–286

    Article  CAS  Google Scholar 

  • Gassan J, Bledzki AK (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Comp Sci Technol. 59: 1303–1309

    Article  CAS  Google Scholar 

  • Gassan J, Bledzki AK (2000) Possibilities to Improve the Properties of Natural Fiber Reinforced Plastics by Fiber Modification - Jute Polypropylene Composites. Appl Comp Mat. 7: 373–385

    Article  CAS  Google Scholar 

  • Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Comp Sci Technol. 60: 2857–2863

    Article  CAS  Google Scholar 

  • George J, Sreekala MS, Thomas S (2001) A Review on Interface Modification and Characterization of Natural Fibre Reinforced Plastic Composites. Polymer Eng Sci. 41: 1471–1485

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer Comp. 46: 10221–10225

    CAS  Google Scholar 

  • Girault R, His I, Andeme-Onzighi C, Driouich A, Morvan C (2000) Identification and partial characteristion of proteins and proteoglycans encrusting the secondary wall of flax fibres. Planta 211: 256–264

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson MT, Persson PV, Iversen T, Hult K, Martinelle M (2004) Polyester coating of cellulose fibre surfaces catalyzed by a cellulose-binding module-Candida Antarctica lipase B fusion protein. Biomacromolecules 5: 106–112

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson MT, Persson PV, Iversen T, Martinelle M, Hult K, Teeri TT, Brummer III H (2005) Modification of cellulose fiber surfaces by use of a lipase and a zyloglucan endotransglycosylase. Biomacromolecules 6: 196–203

    Article  PubMed  CAS  Google Scholar 

  • Gutowski TG (1997) Advanced Composite Manufacturing. Wiley-Interscience, New York

    Google Scholar 

  • Gutowski WS (1999) Physical model of interface and interphase performance in composite materials and bonded polymers. Die Angewandte Makromolekulare Chemie 272: 51–56

    Article  CAS  Google Scholar 

  • Harig H, Bäumer R, Gerardi H (1994) Wie zuverlässig läβt sich die Bündelfestigkeit von Baumwolle bestimmen? Melliand Textilberichte 75: 966–970

    Google Scholar 

  • Hashem M, Hauser P, Smith B (2003) Reaction efficiency for cellulose cationization using 3-chloro-2-hydroxypropyl trimethyl ammonium chloride. Textile Res J. 73: 1017

    CAS  Google Scholar 

  • Henning F, Ernst H, Brüssel R (2005) LFTs for automotive applications. Reinforced Plastics 49: 24–33

    Article  Google Scholar 

  • Kessler RW, Becker U, Kohler R, Goth B (1998) Steam-Explosion of Flax - A superior Technique for Upgrading Fibre Value. Biomass and Bioenergy 14 :237–249

    Article  CAS  Google Scholar 

  • Kim JK, Mai YW (1998) Engineered Interfaces in Fibre Reinforced Composites. Elsevier, Amsterdam

    Google Scholar 

  • Kohler KM, Wedler M, Barthold P (1997) Technische Anwendung von Hanffasern. in Symposium-Proceedings 2. Biorohstoff Hanf. Nova-Institut, Hürth

    Google Scholar 

  • Kohler R, Kessler RW (1999) Designing Natural Fibers for Advanced Materials, in: Proceedings of 5th International Conference on Wood fiber-Plastic Composites. Madison (WI), USA

    Google Scholar 

  • Kohler R, Dück R, Ausperger B, Alex R (2003) A numeric model for the kinetics of water vapor sorption on cellulosic reinforcement fibers. Comp Interf 10: 255–276

    Article  CAS  Google Scholar 

  • Kohler R, Nebel K (2005) Fibrillation of Natural Fibres - Increasing the specific surface for high-performance composites. In: Rohstoffe FN (ed) Schriftenreihe “Nachwachsende Rohstoffe”, vol. 27, Landwirtschaftsverlag, Münster

    Google Scholar 

  • Kozlowski R, Wladyka-Przybylak M (2004) Fiber modification. In: Wallen-berger FT, Weston NE (eds) Natural Fibers, Plastics and Composites Kluwer Academic Publishers, Boston

    Google Scholar 

  • Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6: 3160–3165

    Article  PubMed  CAS  Google Scholar 

  • Lee SM (1993) Handbook of Composite Reinforcements. VCH, Weinheim

    Google Scholar 

  • Lichtenthaler FW, Peters S (2004) Carbohydrates as green raw materials for the chemical industry. Comptes Rendus Chimie 7: 65–90

    Article  CAS  Google Scholar 

  • Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthaselike (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA 102: 2221–2226

    Article  PubMed  CAS  Google Scholar 

  • Madson M, Dunand C, Li X, Verma R, Vanzin Gary F, Caplan J, Shoue Douglas A, Carpita Nicholas C, Reiter Wolf D (2003) The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell. 15: 1662–1670

    Article  PubMed  CAS  Google Scholar 

  • Marsh G (2003) Next step for automotive materials. Materials Today 6: 36–43

    Article  Google Scholar 

  • Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacro molecules 3: 609–617

    Article  CAS  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1994) Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce cell wall extension. Proc Natl Acad Sci USA 91: 6574–6578

    Article  PubMed  CAS  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol. 47: 239–274

    Article  PubMed  CAS  Google Scholar 

  • Nebel K, Kohler R (2005) Fibrillation of natural fibres - Increasing the specific surface for high performance composites. In: Proceedings FAO/ ESCORENA International Conference Textiles for Sustainable Development. Port Elizabeth, South Africa

    Google Scholar 

  • O’Donnell A, Dweib, MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Comp Sci Technol. 64: 1135–1145

    Article  CAS  Google Scholar 

  • Oksman KMS, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Comp Sci Technol 63: 1317–1324

    Article  CAS  Google Scholar 

  • Ossola M, Galante YM (2004) Scouring of flax rove with the aid of enzymes. Enzyme Microb Technol. 34: 177–186

    Article  CAS  Google Scholar 

  • Pena MJ, Ryden P, Madson M, Smith AC, Carpita NC (2004) The galactose residues of xyloglucan are essential to maintain mechanical strength of the primary cell walls in Arabidopsis during growth. Plant Physiol. 134: 443–451

    Article  PubMed  CAS  Google Scholar 

  • Peterson S, Jayaraman K, Bhattacharyya D (2002) Forming performance and biodegradability of woodfibre-Biopol composites. Composites Part A 33: 1123–1134

    Article  Google Scholar 

  • Pühler E, Zimmermann T, Geiger T (2004) Cellulose-Nanofibrils for Polymer Reinforcement, in Global Wood and Natural Fibre Composites Symposium. Kassel, Germany

    Google Scholar 

  • Poirier Y, Dennis DE, Klomparens K, Sommerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256: 520–523

    Article  CAS  PubMed  Google Scholar 

  • Popovska N, Streitwieser DA, Xu C, Gerhard H (2005) Paper derived biomorphic porous titanium carbide and titanium oxide ceramics produced by chemical vapor infiltration. J Europ Ceram Soc. 25: 829–836

    Article  CAS  Google Scholar 

  • Pott GT (2004) Natural fibers with low moisture sensitivity in: Wallenberger FT and Weston NE (eds) Natural Fibers, Plastics and Composites Kluwer Academic Publishers, Boston

    Google Scholar 

  • Prasad BM, Bhatnagar A, Sain MM (2003) High Performance Micro- and Nanobiofibrils Manufacturing Process, in 7th International Conference on Woodfi- bre-plastic Composites. Madison, WI

    Google Scholar 

  • Rambo CR, Cao J, Rusina O, Sieber H (2005) Manufacturing of biomorphic (Si, Ti, Zr)-carbide ceramics by sol-gel processing. Carbon 43: 1174–1183

    Article  CAS  Google Scholar 

  • Reijmers TH, Maliepaard C, Van den Broeck H, Kessler RW, Toonen MAJ, Van der Voet H (2005) Integrated statistical analysis of cDNA microarray and NIR spectroscopic data applied to a hemp dataset. J Bioinf Comp Biol. 3: 891–913

    Article  CAS  Google Scholar 

  • Ridley BR, M.A., ON, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling Phytochemistry 57: 929–967

    Article  PubMed  CAS  Google Scholar 

  • Roberts AW, Roberts E (2004) Cellulose synthase (CesA) genes in algae and seedless plants. Cellulose 11: 419–435

    Article  CAS  Google Scholar 

  • Ryden P, Sugimoto-Shirasu K, Smith AC, Findlay K, Reiter WD, McCann MC (2003) Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked network and rhamnogalacturonan II-borate complex. Plant Physiol. 132: 1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Sharma HSS, Faughey G, Lyons G (1999) Comparison of physical, chemical and thermal characteristics of water-, dew-, and enzyme-retted flax fibres. J Appl PolymSci. 74: 139–143

    Article  CAS  Google Scholar 

  • Singh M, Yee BM (2004) Reactive processing of environmentally conscious, biomorphic ceramics from natural wood precursors. J Europ Ceram Soc. 24: 209–217

    Article  CAS  Google Scholar 

  • Snell KD, Peoples OP (2002) Polyhydroxyalkanoate polymers ant their production in transgenic plants. Metabol Engin. 4: 29–40

    Article  CAS  Google Scholar 

  • Sreekala MS, Thomas S (2003) Effect of surface modification on watersorption characteristics of oil palm fibres. Comp ScI Techn. 63: 861–869

    Article  CAS  Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel Campaa L, Lindvall JJ, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlen M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA. 101: 13951–13956

    Article  PubMed  Google Scholar 

  • Stokes RJ, Evans DF (1997) Fundamentals of Interfacial Engineering. Wiley-VCH, New York

    Google Scholar 

  • Thygesen LG, Hoffmeyer P (2005) Image analysis for the quantification of dislocations in hemp. Ind Crops Prod. 21: 173–184

    Article  Google Scholar 

  • Toonen MAJ, Maliepaard C, Reijmers TH, Van der Voet H, Mastebroek HD, Van den Broeck HC, Ebskamp MJM, Kessler W, Kessler RW (2004) Predicting the chemical composition of fibre and core fraction of hemp (Cannabis sativa L.). Euphytica 140: 39–45

    Article  CAS  Google Scholar 

  • Van den Broeck HC, Ebskamp MJM, Toonen MAJ, Koops AJ Differential expression of genes involved in C1 metabolism and lignin biosynthesis in wooden core and bast tissue of fiber hemp (Cannabis sativa L.). in preparation

    Google Scholar 

  • Van Hattum FWJ, Nunes JP, Bernardo CA (2005) A theoretical and experimental study of new towpreg-based long fibre thermoplastic composites. Composites Part A: Appl Sci Manuf. 36: 25–32

    Article  CAS  Google Scholar 

  • Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUTl. Proc Natl Acad Sci USA 99: 3340–3345

    Article  PubMed  CAS  Google Scholar 

  • Wallenberger FT, Weston NE (eds) (2004) Natural Fibers, Plastics and Composites, Section III, natural Plastics & Matrix materials, Kluwer Academic Publishers, Boston

    Google Scholar 

  • Widsten P (2002) Oxidative Activation of Wood Fibers for the Manufacture of Medium-Density Fiberboard (MDF). In: Series A15. Laboratory of Paper Technology, Helsinki University of Technology, Espoo

    Google Scholar 

  • Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol. 47: 9–27

    Article  PubMed  CAS  Google Scholar 

  • Wróbel M, Zebrowski J, Szopa J (2004) Polyhydroxybutyrate synthesis in transgenie flax. J Biotech. 107: 41–54

    Article  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol. 45: 1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Yuan X, Jayaraman K, Bhattacharyya D (2004) Effects of plasma treatment in enhancing the performance of woodfibre-polypropylene composites. Composites: Part A 35: 1363–1374

    Article  CAS  Google Scholar 

  • Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Composites: Part A 33: 1083–1093

    Article  Google Scholar 

  • Zenoni S, Reale L, Tornielli GB, Lanfaloni L, Porceddu A, Ferrarini A, Moretti C, Zamboni A, Speghini A, Ferranti F, Pezzotti M (2004) Downregulation of the Petunia hybrida α-expansin gene PhEXPl reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. Plant Cell. 16: 295–308

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Toonen, M., Ebskamp, M., Kohler, R. (2007). Improvement of fibre and composites for new markets. In: RANALLI, P. (eds) Improvement of Crop Plants for Industrial End Uses. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5486-0_6

Download citation

Publish with us

Policies and ethics