Advertisement

Genetic improvement of crops for energy generation: comparison of different provision chains with respect to biomass and biofuel production

  • Paolo Ranalli
  • Mario Di Candilo

Abstract

In the next 10 to 15 years a number of future biofuels might potentially come on the market. In this paper we will discuss the supply chains of the most promising biofuels, i.e. Ethanol and ETBE from lignocellulosic (woody) biomass; Fischer-Tropsch diesel from lignocellulosic biomass; HTU diesel. Compared with current biofuels, these new products are expected to show superior performance in terms of cost, environmental impact and socio-economic effects.

Keywords

Quantitative Trait Locus Sugar Beet Energy Generation Lignocellulosic Biomass Genetic Improvement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bray, EA (1997) Plant responses to water deficit. Trends in Plant Sci. 2: 48–54CrossRefGoogle Scholar
  2. Charity JA, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (1999) Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Molecular Breeding 5: 357–365Google Scholar
  3. Croezen HJ, Kampman BE (2005) Duurzame transitie met HTU, een verkenning van de score van het HTU-proces op duurzaamheidsaspecten. CE, DelftGoogle Scholar
  4. De Block M, Verduyn C, De Brouwer D, Cornelissen M (2005) Poly (ADPribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. The Plant Journal 1: 95–106CrossRefGoogle Scholar
  5. Di Candilo M, Ranalli P, Cesaretti C, Pasini P (2004a) Biomass production and energy-transformation trials. In: Proceedings of the 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, pp 1824–1827Google Scholar
  6. Di Candilo M, Ranalli P, Cesaretti C, Pasini P (2004b) Colture non food: ormai realtà l’uso a fini energetici. L’Informatore Agrario 1: 34–38Google Scholar
  7. Ecofys BV (2003) Biofuels in the Dutch market: a fact-finding study. Report 2GAVE03.12. Netherlands Agency for Energy and the environment, European Technology Platform, UtrechtGoogle Scholar
  8. Edmeades GO, Cooper M, Lafitte R, Zinselmeier C, Ribaut JM, Habben JE, Loffler C & Banzinger M (2001). Abiotic stresses and staple crops. In: Nosberger J, Geiger HH, Struik PC (eds) Crop Science: Progress and Prospects. Proceedings of the Third International Crops Science Congress, CABI, Wallingford, UKGoogle Scholar
  9. Energy Research Centre of the Netherlands (2003). Ligno Cellulosic-Ethanol. A second opinion. Report 2GAVE-03.11. ECNGoogle Scholar
  10. EU (2005). Stakeholder Proposal for a Strategic Research Agenda 2025. Part II. pp 102Google Scholar
  11. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD & Thomashov MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124: 1854–1865PubMedCrossRefGoogle Scholar
  12. Girard C, Bottino M, Deleque MH, Jonuanin L (1998) Two strains of cabbage seed weevil (Coleoptera: Curculionidae) exhibit differential susceptibility to a transgenic oilseed rape expressing oryzacystatin I. Journal of Insect Physiology 44: 569–577PubMedCrossRefGoogle Scholar
  13. GM, LBST, bp, ExxonMobil, Shell, TotalFinaElf (2002) Annex “Full Background Report” to the GM well-to-wheel analysis of energy use and greenhouse gas emissions of advanced fuel/vehicle systems. A European study, L-BSystemtechnik GmbH, Ottobrunn, Germany, pp 74–75Google Scholar
  14. Hamelinck CN (2004) Outlook for advanced biofuels. Ph.D. thesis, Utrecht University, pp 232Google Scholar
  15. Heckel DG, Gahan LJ, Liu YB, Tabashnik BE (1999) Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis. In: Proc. National Academy of Sciences of the USA 96, 8373–8377Google Scholar
  16. Hulsbergen KJ, Feil B, Biermann S, Rathke GW, Kalk WD, Diepenbrock W (2001) A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agriculture Ecosystems & Environment 86: 303–321CrossRefGoogle Scholar
  17. Kampman BE, Croezen HJ, den Boer LC (2005) Duurzaamheid van de bioethanol transitie. CE Rapport, DelftGoogle Scholar
  18. Lindroth A, Bath A (1999) Assessment of regional willow coppice yield in Sweden on basis of water availability. Forest Ecology and Management 121 (1–2): 57–65CrossRefGoogle Scholar
  19. Liu YB, Tabashnik BE, Dennehy TJ, Patin AL, Bartlett AC (1999) Development time and resistance to Bt crops. Nature 400 (6744): 519PubMedCrossRefGoogle Scholar
  20. Martin K (2004). Cold Tolerance, SFR2, and the Legacy of Gary Warren. The Plant Cell 16: 1955–1957CrossRefGoogle Scholar
  21. McManus MT, Burgess EPJ, Philip PB, Watson L, Laing WA, Voisey CR, White DWR (1999) Expression of the soybean (Kunitz) tripsin inhibitor in transgenic tobacco: effects on larval development of Spodoptera litura. Transgenic Research 8: 383–395CrossRefGoogle Scholar
  22. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2005) Reactive oxygen gene network of plants. Trends in Plant Science 9 (10): 490–498CrossRefGoogle Scholar
  23. Nguyen HT, Babu RC, Blum A (1997) Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci. 37: 1426–1434CrossRefGoogle Scholar
  24. Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr. Opin. Biotechnol. 14: 194–199PubMedCrossRefGoogle Scholar
  25. Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. In: Proc. Natl. Acad. Sci. USA 24: 14570–14575CrossRefGoogle Scholar
  26. Thomashov MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571–599CrossRefGoogle Scholar
  27. Van Tuil R, De Jong E, Scott E, Weusthuis R, Vellema S, De Keizer I, Croezen H (2002) Biomass for the chemical industry. ATO, WageningenGoogle Scholar
  28. Zhu J, Shi V, Lee BH, Damsz B, Cheng S, Stirm V, Zhu JK, Hasegawa PM, Bressan Ray A (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. In: Proc. Natl. Acad. Sci. USA, 101, pp 9873–9878PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Paolo Ranalli
    • 1
  • Mario Di Candilo
    • 1
  1. 1.Istituto Sperimentale per le Colture IndustrialiBolognaItaly

Personalised recommendations