Skip to main content

Development of the local approach to fracture over the past 25 years: Theory and applications

  • Conference paper
Advances in Fracture Research

Abstract

This review paper is devoted to the local approach to fracture (LAF) for the prediction of the fracture toughness of structural steels. The LAF has been considerably developed over the past two decades, not only to provide a better understanding of the fracture behaviour of materials, in particular the failure micromechanisms, but also to deal with loading conditions which cannot easily be handled with the conventional linear elastic fracture mechanics and elastic-plastic fracture mechanics global approaches. The bases of this relatively newly developed methodology are first presented. Both ductile rupture and brittle cleavage fracture micromechanisms are considered. The ductile-to-brittle transition observed in ferritic steels is also briefly reviewed. Two types of LAF methods are presented: (i) those assuming that the material behaviour is not affected by damage (e.g. cleavage fracture), (ii) those using a coupling effect between damage and constitutive equations (e.g. ductile fracture). The micromechanisms of brittle and ductile fracture investigated in elementary volume elements are briefly presented. The emphasis is laid on cleavage fracture in ferritic steels. The role of second phase particles (carbides or inclusions) and grain boundaries is more thoroughly discussed. The distinction between nucleation and growth controlled fracture is made. Recent developments in the theory of cleavage fracture incorporating both the effect of stress state and that of plastic strain are presented. These theoretical results are applied to the crack tip situation to predict the fracture toughness. It is shown that the ductile-to-brittle transition curve can reasonably be well predicted using the LAF approach. Additional applications of the LAF approach methods are also shown, including: (i) the effect of loading rate and prestressing; (ii) the influence of residual stresses in welds; (iii) the mismatch effects in welds; (iv) the warm-prestressing effect. An attempt is also made to delineate research areas where large improvements should be made for a better understanding of the failure behaviour of structural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ASTM E1921 (2002). Test Method for the Determination of Reference Temperature To for Ferritic Steels in the Transition Range. American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Bakker, A. and Koers, R.W.I. (1991). Prediction of cleavage fracture events in the brittle-ductile transition region of a ferritic steel. In: Defect Assessment in Components-Fundamentals and Applications, ESIS/EG9 (Edited by Blauel, J.G. and Schwalbe, K.-H.). Mechanical Engineering Publications, London, 613–632.

    Google Scholar 

  • Bauvineau, L. (1996). Approche locale de la rupture ductile: applications à un acier Carbone-Manganèse. PhD thesis, Ecole des Mines de Paris.

    Google Scholar 

  • Benzerga, A.A. (2000). Rupture ductile des töles anisotropes. PhD thesis, Ecole des Mines de Paris.

    Google Scholar 

  • Benzerga, A.A. (2002). Micromechanics of coalescence in ductile fracture. Journal of the Mechanics and Physics of Solids 50, 1331–1362.

    Article  Google Scholar 

  • Benzerga, A., Besson, J. and Pineau, A. (1999). Coalescence-controlled anisotropic ductile fracture. Journal of Engineering Materials and Technology 121, 221–229.

    Google Scholar 

  • Benzerga, A., Tvergaard, V. and Needleman, A. (2002). Size effects in the Charpy V-notch test. International Journal of Fracture 116, 275–296.

    Article  Google Scholar 

  • Benzerga, A.A. and Besson, J. (2001). Plastic potentials for anisotropic porous solids. European Journal of Mechanics A/Solids 20, 397–434.

    Article  Google Scholar 

  • Benzerga, A.A., Besson, J. and Pineau, A. (2004a). Anisotropic ductile fracture: Part I: experiments. Acta Materialia 52, 4623–4638.

    Article  Google Scholar 

  • Benzerga, A.A., Besson, J. and Pineau, A. (2004b). Anisotropic ductile fracture. Part II: theory. Acta Materialia 52, 4639–4650.

    Article  Google Scholar 

  • Beremin, F.M. (1981a). Cavity formation from inclusions in ductile fracture of A508 steel. Metallurgical Transactions A 12A, 723–731.

    Google Scholar 

  • Beremin, F.M. (1981b). Numerical modeling of warm prestress effect using a damage function for cleavage fracture. In: ICF5, Advances in Fracture Research, (Edited by François, D.). Pergamon, New York, Vol II 825–832.

    Google Scholar 

  • Beremin, F.M. (1983). A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metallurgical Transactions A 14, 2277–2287.

    Google Scholar 

  • Berg, A. (1962). Proceedings of the motion of cracks in plane viscous deformation. In: 4th US National Congress of Applied Mechanics, (Edited by Rosenberg, R.M.) University of California, CA, 885–892.

    Google Scholar 

  • Bernauer, G., Brocks, W. and Schmitt, W. (1999). Modification of the Beremin model for cleavage fracture in the transition region of a ferritic steel. Engineering Fracture Mechanics 64, 305–325.

    Article  Google Scholar 

  • Besson, J. (2004). Local Approach to Fracture. Les Presses, Ecole des Mines, Paris, France.

    Google Scholar 

  • Böhme, W., Sun, D., Schmitt, W. and Höning, A. (1992). Application of micromechanical material models to the evaluation of Charpy tests. In: Advances in Fracture/Damage Models for the Analysis of Engineering Problems. (Edited by Giovanola, J.). ASME, 203–216.

    Google Scholar 

  • Bordet, S.R., Karstensen, A.D., Knowles, D.M. and Wiesner, C.S. (2005a). A new statistical local criterion for cleavage fracture in steel. Part I-Model presentation. Engineering Fracture Mechanics 72, 435–452.

    Article  Google Scholar 

  • Bordet, S.R., Karstensen, A.D., Knowles, D.M. and Wiesner, C.S. (2005b). A new statistical local criterion for cleavage fracture in steel. Part II-Application to an offshore structural steel. Engineering Fracture Mechanics 72, 453–474.

    Article  Google Scholar 

  • Bouyne, E., Flower, H.M., Lindley, T.C. and Pineau, A. (1998). Use of EBSD technique to examine microstructure and cracking in a bainitic steel. Scripta Materialia 39, 295–300.

    Article  Google Scholar 

  • Carassou, S., Renevey, S., Marini, B. and Pineau, A. (1998). Modelling of the ductile to brittle transition of a low alloy steel. In: Fracture from Defects, ESIS/ECF12, (Edited by Brown, M.W., de los Rios, E.R. and Miller, K.J.) EMAS, Chameleon Press, London 2, 691–696.

    Google Scholar 

  • Cardinal, J., Wiesner, C.S., Goldthorpe, M.C. and Bannister, A.C. (1996). Application of the local approach to cleavage fracture to failure prediction of heat affected zones. Euromech-Mecamat. Journal de Physique IV 6, C6-C6-194.

    Google Scholar 

  • Chen, J.H., Wang, Q., Wang, G.Z. and Li, Z. (2003). Fracture behavior at crack Tipp-a new framework for cleavage mechanism of steel. Acta Materialia 51, 1841–1855.

    Article  Google Scholar 

  • Curry, D.A. and Knott, J.F. (1979). Effect of microstructure on cleavage fracture toughness of quenched and tempered steels. Metal Science 13, 341–345.

    Google Scholar 

  • Decamp, K., Bauvineau, L., Besson, J. and Pineau, A. (1997). Size and geometry effect on ductile rupture of notched bars in a C-Mn steel: experiments and modelling. International Journal of Fracture 88, 1–18.

    Article  Google Scholar 

  • Devillers-Guerville, L., Besson, J. and Pineau, A. (1997). Notch fracture toughness of a cast duplex stainless steel: modelling of experimental scatter and size effects. Nuclear Engineering and Design 168, 211–225.

    Article  Google Scholar 

  • Dodds, R.H., Anderson, T.L. and Kirk, M.T. (1991). A framework to correlate a/w ratio effects on elastic-plastic fracture toughness (Jc). International Journal of Fracture 48, 1–22.

    Article  Google Scholar 

  • Faleskog, J., Kroon, M. and Oberg, H. (2004). A probabilistic model for cleavage fracture with a length scale-parameter estimation and predictions of stationary crack experiments. Engineering Fracture Mechanics 71, 57–79.

    Article  Google Scholar 

  • Floch, L. and Burdekin, F. (1999). Application of the coupled brittle ductile model to study correlation between Charpy energy and fracture toughness values. Engineering Fracture Mechanics 63, 57–80.

    Article  Google Scholar 

  • François, D. and Pineau, A. (2001). Fracture of metals. Part II: ductile fracture. In: Physical Aspects of Fracture, (Edited by Bouchaud, E., Jeulin, D., Prioul, C. and Roux, S.) Kluwer, Dordrecht, 125–146.

    Google Scholar 

  • Gao, X. and Dodds, R.H. (2000). Constraint effects on the ductile-to-brittle transition temperature of ferritic steels: a Weibull stress model. International Journal of Fracture 102, 43–69.

    Article  Google Scholar 

  • Gao, X., Dodds, R.H., Tregoning, R.L., Joyce, J.A. and Link, R.E. (1999). A Weibull stress model to predict cleavage fracture in plates containing surface cracks. Fatigue and Fracture of Engineering Materials and Structures 22, 481–493.

    Article  Google Scholar 

  • Gao, X., Ruggieri, C. and Dodds, R.H. (1998). Calibration of Weibull stress parameters using fracture toughness data. International Journal of Fracture 92, 175–200.

    Article  Google Scholar 

  • Garrison, W.M. and Moody, N.R. (1987). Ductile rupture. Journal of Physics and Chemistry of Solids 48, 1035–1074.

    Article  Google Scholar 

  • Gologanu, M., Leblond, J.-B. and Devaux, J. (1993). Approximate models for ductile metals containing non-spherical voids-Case of axisymmetric prolate ellipsoidal cavities. Journal of the Mechanics and Physics of Solids 41, 1723–1754.

    Article  Google Scholar 

  • Gologanu, M., Leblond, J.-B. and Devaux, J. (1994). Approximate models for ductile metals containing non-spherical voids-Case of axisymmetric oblate ellipsoidal cavities. Trans. ASME. Journal of Engineering Materials and Technology 116, 290–294.

    Google Scholar 

  • Gourgues, A.F., Flower, H.M. and Lindley, T.C. (2000). Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures. Materials Science and Technology 16, 26–40.

    Article  Google Scholar 

  • Gurson, A. (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology 99, 2–15.

    Google Scholar 

  • Hadidi-moud, S., Mirzaee-Sisan, A., Truman, C.E. and Smith, D.J. (2004). A local approach to cleavage fracture in ferritic steels following warm pre-stressing. Fatigue and Fracture of Engineering Materials and Structures 27, 931–942.

    Article  Google Scholar 

  • Hahn, G.T. (1984) The influence of microstructure on brittle fracture toughness. Metallurgical Transactions 15A, 947–959.

    Google Scholar 

  • Henry, M., Marandet, B., Mudry, F. and Pineau, A. (1985). Effets de la température et de la vitesse de chargement sur la ténacité à rupture d’un acier faiblement allié-Interpréetation par des critères locaux. Journal de Mécanique Théorique et Appliquée 4, 741–768.

    Google Scholar 

  • Iwadate, T., Tanaka, Y., Takemata, H. and Kabutomori, T. (1985). Elastic-plastic fracture toughness behavior of heavy section steels for nuclear pressure vessels. Nuclear Engineering and Design 87, 89–99.

    Article  Google Scholar 

  • Jaramillo, R.A., Babu, S.S., Ludtka, G.M., Kisner, R.A., Wilgren, J.B., Mackiewicz-Ludtka, G., Nicholson, D.M., Kelly, S.M., Murugananth, M. and Bhadeshia, H.K.D.H. (2005). Effect of 30T magnetic field on transformations in a novel bainitic steel. Scripta Materialia 52, 461–466.

    Article  Google Scholar 

  • Kaechele, L.E. and Tetelman, A.S. (1969). A statistical investigation of microcrack formation. Acta Metallurgica 17, 463–475.

    Article  Google Scholar 

  • Kenney, K.L., Reuter, W.G., Reemsnyder, H.S. and Matlock, D.K. (1997). Fatigue and Fracture Mechanics, ASTM STP 1321, (Edited by Underwood, J.H., Macdonald, B.D. and Mitchell, M.R.). ASTM, Philadelphia, PA, 28, 427–449.

    Google Scholar 

  • Kim, Y.J. and Schwalbe, K.-H. (2001a). Mismatch effect on plastic yield loads in idealised weldments: I. Weld center cracks. Engineering Fracture Mechanics 68, 163–182.

    Article  Google Scholar 

  • Kim, Y.J. and Schwalbe, K.-H. (2001b). Mismatch effect on plastic yield loads in idealised weldments: II. Heat affected zone cracks. Engineering Fracture Mechanics 68, 183–199.

    Article  Google Scholar 

  • Kroon, M. and Faleskog, J. (2002). A probabilistic model for cleavage fracture with a length scale-effect of materials parameters and constraint. International Journal of Fracture 118, 99–118.

    Article  Google Scholar 

  • Lambert-Perlade, A., Gourgues, A.F., Besson, J., Sturel, T. and Pineau, A. (2004). Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strengh low alloy steel. Metallurgical and Materials Transactions A 35A, 1039–1053.

    Google Scholar 

  • Lee, S., Kim, S., Hwang, B., Lee, B. and Lee, C. (2002). Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel. Acta Materialia 50, 4755–4762.

    Article  Google Scholar 

  • Lefèvre, W., Barbier, G., Masson, R. and Rousselier, G. (2002). A modified Beremin model to simulate the warm pre-stress effect. Nuclear Engineering and Design 216, 27–42.

    Article  Google Scholar 

  • Margolin, B.Z., Gulenko, A.G. and Shvetsova, V.A. (1998). Improved probabilistic model for fracture toughness prediction for nuclear pressure vessel steels. International Journal of Pressure Vessel and Piping 75, 843–855.

    Article  Google Scholar 

  • Martin-Meizoso, A., Ocana-Arizcorreta, I., Gil-Sevillano, J. and Fuentes-Pérez, M. (1994). Modelling cleavage fracture of bainitic steels. Acta Metallurgica et Materialia 42, 2057–2068.

    Article  Google Scholar 

  • Mathur, K., Needleman, A. and Tvergaard, V. (1993). Dynamic 3D analysis of the Charpy V-notch test. Modelling simulation. Materials Science and Engineering 1, 467–484.

    Google Scholar 

  • Mathur, K., Needleman, A. and Tvergaard, V. (1994). 3D analysis of failure modes in the Charpy impact test. Modelling Simulation. Materials Science and Engineering 2, 617–635.

    Google Scholar 

  • Matos, C.G. and Dodds, R.H. (2001). Modelling the effects of residual stresses on cleavage fracture in welded steel frames. In: ICF 10 Conference, Hawaï.

    Google Scholar 

  • Mc Clintock, F.A. (1968). A criterion for ductile fracture by the growth of holes. Journal of Applied Mechanics 35, 363–371.

    Google Scholar 

  • Mc Clintock, F.M. (1971). Plasticity aspects of fracture. In: Fracture, (Edited by Liebowitz, H.) Academic Press, New-York and London, 3, 47–225.

    Google Scholar 

  • Minami, F. and Arimochi, K. (2001). Evaluation of prestraining and dynamic loading effects on the fracture toughness of structural steels by the local approach. Journal of Pressure Vessel Technology 123, 362–372.

    Article  Google Scholar 

  • Mudry, F. (1987). A local approach to cleavage fracture. Nuclear Engineering and Design 105, 65–76.

    Article  Google Scholar 

  • Narströom, T. and Isacsson, M. (1999). Microscopic investigation of cleavage initiation in modified A 508 B pressure vessel steel. Materials Science and Engineering A 271, 224–231.

    Google Scholar 

  • Naudin, C., Pineau, A. and Frund, J.M. (2001). Toughness modeling of PWR vessel steel containing segregated zones. In: 10th Conference on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors, Lake Tahoe, Nevada, USA.

    Google Scholar 

  • Needleman, A. and Tvergaard, V. (1987). An analysis of ductile rupture modes at a crack tip. Journal of the Mechanics and Physics of Solids 35, 151–183.

    Article  Google Scholar 

  • Norris, D. (1979). Computer simulation of the Charpy V-notch toughness test. Engineering Fracture Mechanics 11, 261–274.

    Article  Google Scholar 

  • O’Dowd, N.P. and Shih, C.F. (1991). Family of Crack-Tip Fields characterized by a Triaxiality Parameter: Part I-Structure of Fields. Journal of the Mechanics and Physics of Solids 39, 989–1015.

    Article  Google Scholar 

  • O’Dowd, N.P. and Shih, C.F. (1992). Family of Crack-Tip Fields characterized by a Triaxiality Parameter: Part II-Fracture Applications. Journal of the Mechanics and Physics of Solids 40, 939–963.

    Article  Google Scholar 

  • Ohata, M., Minami, F. and Toyoda, M. (1996). Local approach to strength mismatch effect on cleavage fracture of notched material. Euromech-Mecamat. Journal de Physique IV 6, C6-C6-278.

    Google Scholar 

  • Pardoen, T. and Hutchinson, J.W. (2000). An extended model for void growth and coalescence. Journal of the Mechanics and Physics of Solids 48, 2467–2512.

    Article  Google Scholar 

  • Pardoen, T. and Besson, J. (2004). Micromechanics-based constitutive models of ductile fracture. Local Approach to Fracture. (Edited by Besson, J.). Les Presses, Ecole des Mines de Paris, 221–264.

    Google Scholar 

  • Petti, J.P. and Dodds, R.H. (2004). Constraint comparisons for common fracture specimens: C(T)s and SE(B)s. Engineering Fracture Mechanics 71, 2677–2683.

    Article  Google Scholar 

  • Petti, J.P. and Dodds, R.H. (2005). Calibration of the Weibull stress scale parameter, σu, using the Master Curve. Engineering Fracture Mechanics 72, 91–120.

    Article  Google Scholar 

  • Pineau, A. (1982). Review of fracture micromechanisms and a local approach to predicting crack resistance in low strength steels. In: Advances in Fracture Research, ICF5 (Edited by François, D.). Pergamon, Oxford, UK, 553–577.

    Google Scholar 

  • Pineau, A. (1992). Global and local approaches of fracture-Transferability of laboratory test results to components. In: Topics in Fracture and Fatigue, (Edited by Argon, A.S.). Springer, New-York, 197–234.

    Google Scholar 

  • Pineau, A. (2003). Practical Application of Local Approach Methods. In: Comprehensive Structural Integrity (Edited by Ainsworth, R.A. and Schwalbe, K.-H.). Elsevier, Amsterdam, 7, 177–225.

    Google Scholar 

  • Pineau, A. and Joly, P. (1991). Local versus global approaches to elastic-plastic fracture mechanics: Application to ferritic steels and a cast duplex stainless steel. In Defect Assessment in Components-Fundamentals and Applications ESIS/EGF9, (Edited by Blauel, J.G. and Schwalbe, K.-H.). Mechanical Engineering Publications, London, 381–414.

    Google Scholar 

  • Rice, J.R. and Tracey, D.M. (1969). On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids 17, 201–217.

    Article  Google Scholar 

  • Rodriguez-Ibabe, J.M. (1998). The role of microstructure in toughness behaviour of microalloyed steels. Materials Science Forum, Microalloying in Steels 284–286, 51–62.

    Google Scholar 

  • Roos, E., Alsmann, U., Elsässer, K., Eisele, W. and Seidenfuss, M. (1998). Experiments on warm prestress effect and their numerical simulation based on local approach. In: Fracture from Defects. ECF 12 (Edited by Brown, M.W., de los Rios, E.R. and Miller, K.J.). EMAS (Engineering Materials Advisary Services LTD), UK. Vol. II, 939–944.

    Google Scholar 

  • Rossoll, A., Berdin, C. and Prioul, C. (2002). Determination of the fracture toughness of a low alloy steel by the instrumented Charpy impact test. International Journal of Fracture 115, 205–226.

    Article  Google Scholar 

  • Rousselier, G. (1987). Ductile fracture models and their potential in local approach of fracture. Nuclear Engineering and Design 105, 97–111.

    Article  Google Scholar 

  • Ruggieri, C. and Dodds, R.H. (1996). A transferability model for brittle fracture including constraint and ductile tearing effects: A probabilistic approach. International Journal of Fracture 79, 309–340.

    Article  Google Scholar 

  • Ruggieri, C., Dodds, R.H. and Wallin, K. (1998). Constraint effects on reference temperature To for ferritic steels in the transition region. Engineering Fracture Mechanics 60, 19–36.

    Article  Google Scholar 

  • Schmitt, W., Sun, D. and Blauel, J. (1997). Recent advances in the application of the Gurson model to the evaluation of ductile fracture toughness. In: Recent Advances in Fracture. TMS, 77–87.

    Google Scholar 

  • Stöckl, H., Böschen, R., Schmitt, W., Varfolomeyev, I. and Chen, J.H. (2000). Quantification of the warm prestressing effect in a shape welded 10 Mn Mo Ni 5-5 material. Engineering Fracture Mechanics 67, 119–137.

    Article  Google Scholar 

  • Tanguy, B., Besson, J. and Pineau, A. (2003). Comment on “Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel”. Scripta Materialia 49, 191–197.

    Article  Google Scholar 

  • Tanguy, B., Besson, J., Piques, R. and Pineau, A. (2005a). Ductile-to-brittle transition of an A 508 steel characterized by Charpy impact test: Part I-experimental results. Engineering Fracture Mechanics 72, 49–72.

    Article  Google Scholar 

  • Tanguy, B., Besson, J., Piques, R. and Pineau, A. (2005b). Ductile-to-brittle transition of an A 508 steel characterized by Charpy impact test. Part II: modeling of the Charpy transition curve. To appear in Engineering Fracture Mechanics 72, 413–434.

    Article  Google Scholar 

  • Thomason, P.F. (1985). Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids. Acta Metallurgica 33, 1079–1085.

    Article  Google Scholar 

  • Tvergaard, V. (1990). Material failure by void growth to coalescence. Advances in Applied Mechanics 27, 83–151.

    Google Scholar 

  • Tvergaard, V. and Needleman, A. (1984). Analysis of cup-cone fracture in a round tensile bar. Acta Metallurgica 32, 157–169.

    Article  Google Scholar 

  • Tvergaard, V. and Needleman, A. (1986). An analysis of the temperature and rate dependence of Charpy V-notch test. Journal of the Mechanics and Physics of Solids 34, 213–241.

    Article  Google Scholar 

  • Tvergaard, V. and Needleman, A. (1988) An analysis of the temperature and rate dependence of Charpy V-notch energies for a high nitrogen steel. International Journal of Fracture 37, 197–215.

    Article  Google Scholar 

  • Wallin, K. (1991a). Fracture toughness transition curve shape for ferritic structural steels. In Proceedings of the Joint FEFG/ICF International Conference on Fracture of Engineering Materials and Structures, (Edited by Teoh, S.H. and Lee, K.H.). Elsevier, London, 83–88.

    Google Scholar 

  • Wallin, K. (1991b). Statistical modelling of fracture in the ductile-to-brittle transition region. In Defect Assessment in Components-Fundamentals and Applications. ESIS/EGF9, (Edited by Blauel, J.G. and Schwalbe, K.-H.). Mechanical Engineering Publications, London, 415–445.

    Google Scholar 

  • Wallin, K., Saario, T. and Torronen, K. (1984). Statistical model for carbide induced brittle fracture in steel. Metal Science 18, 13–16.

    Article  Google Scholar 

  • Xia, L. and Cheng, L. (1997). Transition from ductile tearing to cleavage fracture. A cell model approach. International Journal of Fracture 87, 289–305.

    Article  Google Scholar 

  • Xia, L. and Shih, F.C. (1996). Ductile crack growth: III. Transition to cleavage fracture incorporating statistics. Journal of the Mechanics and Physics of Solids 44, 603–639.

    Article  Google Scholar 

  • Zhang, Z.L. and Niemi, E. (1994). Analyzing ductile fracture using dual dilational constitutive equations. Fatigue and Fracture of Engineering Materials and Structures 17, 695–707.

    Google Scholar 

  • Zhang, Z.L. and Niemi, E. (1995). A new failure criterion for the Gurson-Tvergaard dilational constitutive model. International Journal of Fracture 70, 321–334.

    Article  Google Scholar 

  • Zhou, Z.L. and Lin, S.H. (1998). Influence of local brittle zones on the fracture toughness of high strength low-alloyed multipass weld metals. Acta Metallurgica Sinica 11, 87–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Pineau, A. (2006). Development of the local approach to fracture over the past 25 years: Theory and applications. In: Carpinteri, A., Mai, YW., Ritchie, R.O. (eds) Advances in Fracture Research. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5423-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5423-5_9

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4626-1

  • Online ISBN: 978-1-4020-5423-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics