Skip to main content

Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials

  • Conference paper
Advances in Fracture Research

Abstract

Fracture mechanics concepts are applied to gain some understanding of the hierarchical nanocomposite structures of hard biological tissues such as bone, tooth and shells. At the most elementary level of structural hierarchy, bone and bone-like materials exhibit a generic structure on the nanometer length scale consisting of hard mineral platelets arranged in a parallel staggered pattern in a soft protein matrix. The discussions in this paper are organized around the following questions: (1) The length scale question: why is nanoscale important to biological materials? (2) The stiffness question: how does nature create a stiff composite containing a high volume fraction of a soft material? (3) The toughness question: how does nature build a tough composite containing a high volume fraction of a brittle material? (4) The strength question: how does nature balance the widely different strengths of protein and mineral? (5) The optimization question: Can the generic nanostructure of bone and bone-like materials be understood from a structural optimization point of view? If so, what is being optimized? What is the objective function? (6) The buckling question: how does nature prevent the slender mineral platelets in bone from buckling under compression? (7) The hierarchy question: why does nature always design hierarchical structures? What is the role of structural hierarchy? A complete analysis of these questions taking into account the full biological complexities is far beyond the scope of this paper. The intention here is only to illustrate some of the basic mechanical design principles of bone-like materials using simple analytical and numerical models. With this objective in mind, the length scale question is addressed based on the principle of flaw tolerance which, in analogy with related concepts in fracture mechanics, indicates that the nanometer size makes the normally brittle mineral crystals insensitive to cracks-like flaws. Below a critical size on the nanometer length scale, the mineral crystals fail no longer by propagation of pre-existing cracks, but by uniform rupture near their limiting strength. The robust design of bone-like materials against brittle fracture provides an interesting analogy between Darwinian competition for survivability and engineering design for notch insensitivity. The follow-up analysis with respect to the questions on stiffness, strength, toughness, stability and optimization of the biological nanostructure provides further insights into the basic design principles of bone and bone-like materials. The staggered nanostructure is shown to be an optimized structure with the hard mineral crystals providing structural rigidity and the soft protein matrix dissipating fracture energy. Finally, the question on structural hierarchy is discussed via a model hierarchical material consisting of multiple levels of self-similar composite structures mimicking the nanostructure of bone. We show that the resulting “fractal bone”, a model hierarchical material with different properties at different length scales, can be designed to tolerate crack-like flaws of multiple length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bao, G. and Suo, Z. (1992). Remarks on crack-bridging concepts. Applied Mechanics Review 45, 355–366.

    Google Scholar 

  • Barenblatt, G.I. (1985). The formation of equilibrium cracks during brittle fracture: Rectilinear cracks in plane plates. Journal of Applied Mathematics and Mechanics 23, 622–636.

    Article  MathSciNet  Google Scholar 

  • Bazant, Z.P. (1976). Instability, ductility and size effect in strain-softening concrete. Journal of the Engineering Mechanics Division-ASCE 102, 331–344.

    Google Scholar 

  • Bazant, Z.P. and Cedolin, L. (1983). Finite element modeling of crack band propagation. Journal of Structural Engineering-ASCE 109, 69–92.

    Google Scholar 

  • Bazant, Z.P. and Planas, J. (1998). Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bilby, B.A., Cottrell, A.H. and Swinden, K.H. (1963). The spread of plastic yield from a notch. Proceedings of the Royal Society of London A 272, 304–314.

    Google Scholar 

  • Bouxsein, M.L. (2003) Bone quality: where do we go from here? Osteoporosis International 14, S118–S127.

    Article  Google Scholar 

  • Brett, C. and Waldron, K. (1981). Physiology and Biochemistry of Plant Cell Walls. Chapman & Hall, London.

    Google Scholar 

  • Camacho, G.T. and Ortiz, M. (1996) Computational modeling of impact damage in brittle materials. International Journal of Solids and Structures 33, 2899–2938.

    Article  Google Scholar 

  • Carpinteri, A. (1982). Notch sensitivity in fracture testing of aggregative materials. Engineering Fracture Mechanics 16, 467–481.

    Article  Google Scholar 

  • Carpinteri, A. (1997). Structural Mechanics: A Unified Approach. Chapman & Hall, London.

    MATH  Google Scholar 

  • Cox, B.N. and Marshall, D.B. (1994). Concepts for bridged cracks in fracture and fatigue. Acta Metallurgica et Materialia 42, 341–363.

    Article  Google Scholar 

  • Currey, J.D. (1977). Mechanical properties of mother of pearl in tension. Proceedings of the Royal Society of London B 196, 443–463.

    Google Scholar 

  • Currey, J.D. (1984). The Mechanical Adaptations of Bones. Princeton University Press, Princeton, NJ, pp. 24–37.

    Google Scholar 

  • Drugan, W.J. (2001). Dynamic fragmentation of brittle materials: analytical mechanics-based models. Journal of the Mechanics and Physics of Solids 49, 1181–1208.

    Article  Google Scholar 

  • Dugdale, D.S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 8, 100–104.

    Article  Google Scholar 

  • Evans, A.G. (1990) perspective on the development of high-toughness ceramics. Journal of the American Ceramic Society 73, 187–206.

    Article  Google Scholar 

  • Fantner, G.E., Birkedal, H., Kindt, J.H., Hassenkam, T., Weaver, J.C., Cutroni, J.A., Bosma, B.L., Bawazer, L., Finch, M.M., Cidade, G.A.G., Morse, D.E., Stucky, G.D. and Hansma, P.K. (2004). Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. Bone 35, 1013–1022

    Article  Google Scholar 

  • Fengel, D. and Wegener, G. (1984). Wood Chemistry, Ultrastructure, Reaction. Walter de Gruter, Berlin.

    Google Scholar 

  • Fratzl, P., Gupta, H.S., Paschalis, E.P. and Roschger, P. (2004a) Structure and mechanical quality of the collagen-mineral nano-composite in bone. Journal of Materials Chemistry 14, 2115–2123.

    Article  Google Scholar 

  • Fratzl, P., Burgert, I. and Gupta, H.S. (2004b). On the role of interface polymers for the mechanics of natural polymeric composites. Physical Chemistry Chemical Physics 6, 5575–5579.

    Article  Google Scholar 

  • Gao, H. and Chen, S. (2005). Flaw tolerance in a thin strip under tension. Journal of Applied Mechanics 72, 732–737.

    Article  MathSciNet  Google Scholar 

  • Gao, H. and Ji, B. (2003). Modeling fracture in nanomaterials via a virtual internal bond method. Engineering Fracture Mechanics 70, 1777–1791.

    Article  Google Scholar 

  • Gao, H. and Yao, H. (2004). Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proceedings of the National Academy of Sciences of the United States of America 101, 7851–7856.

    Article  Google Scholar 

  • Gao, H., Ji, B., Jäger, I.L., Arzt, E. and Fratzl. P. (2003). Materials become insensitive to flaws at nanoscale: lessons from nature. Proceedings of the National Academy of Sciences of the United States of America 100, 5597–5600.

    Article  Google Scholar 

  • Gao, H., Ji, B., Buehler, M.J. and Yao, H. (2004). Flaw tolerant bulk and surface nanostructures of biological systems. Mechanics and Chemistry of Biosystems 1, 37–52.

    Google Scholar 

  • Gao, H., Wang, X., Yao, H., Gorb, S. and Arzt, E. (2005). Mechanics of hierarchical adhesion structure of gecko, Mechanics of Materials 37, 275–285.

    Article  Google Scholar 

  • Goldberg, D. (1989), Genetic Algorithm in Search, Optimization, and Machine Learning. Addison Wesley.

    Google Scholar 

  • Guo, X. and Gao, H. (2005). Bio-inspired material design and optimization. IUTAM Symposium on topological design optimization of structures, machines and materials-status and perspectives, October 26–29, 2005, Rungstedgaard, Copenhagen, Denmark.

    Google Scholar 

  • Hassenkam, T., Fantner, G.E., Cutroni, J.A., Weaver, J.C., Morse, D.E. and Hansma, P.K. (2004). Highresolution AFM imaging of intact and fractured trabecular bone. Bone 35, 4–10.

    Article  Google Scholar 

  • Hillerborg, A., Modeer, M. and Petersson, P.E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6, 773–782.

    Article  Google Scholar 

  • Jackson, A.P., Vincent, J.F.V. and Turner, R.M. (1988). The mechanical design of nacre. Proceedings of the Royal Society of London B 234, 415–440.

    Google Scholar 

  • Jäger, I. and Fratzl, P. (2000). Mineralized collagen Mbrils: a mechanical model with a staggered arrangement of mineral particles. Biophysical Journal 79, 1737–1746.

    Google Scholar 

  • Ji, B. and Gao, H. (2004a). Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids 52, 1963–1990.

    Article  Google Scholar 

  • Ji, B. and Gao, H. (2004b). A study of fracture mechanisms in biological nano-composites via the virtual internal bond model. Materials Science and Engineering A 366, 96–103.

    Article  Google Scholar 

  • Ji, B. and Gao, H. (2006) Elastic properties of nanocomposite structure of bone. Composite Science and Technology, in press.

    Google Scholar 

  • Ji, B., Gao H. and Hsia, K.J. (2004a). How do slender mineral crystals resist buckling in biological materials? Philosophical Magazine Letters 84, 631–641.

    Article  Google Scholar 

  • Ji, B., Gao, H. and Wang, T.C. (2004b). Flow stress of biomorphous metal-matrix composites. Materials Science and Engineering A 386, 435–441.

    Article  Google Scholar 

  • Jiang, H.D., Liu, X.Y., Lim, C.T., and Hsu, C.Y. (2005). Ordering of self-assembled nanobiominerals in correlation to mechanical properties of hard tissues. Applied Physics Letters 86, 163901.

    Article  Google Scholar 

  • Kamat, S., Su, X., Ballarini, R. and Heuer, A.H. (2000). Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040.

    Article  Google Scholar 

  • Karihaloo, B.L. (1979). A note on complexities of compression failure. Proceedings of the Royal Society of London A 368, 483–493.

    Google Scholar 

  • Kauffmann, F., Ji, B., Dehm, G., Gao, H. and Arzt, E. (2005). A quantitative study of the hardness in a superhard nanocrystalline titanium nitride/silicon nitride coating. Scripta Materialia 52, 1269–1274.

    Article  Google Scholar 

  • Kendall, K. (1978). Complexities of compression failure. Proceedings of the Royal Society of London A 361, 245–263.

    Google Scholar 

  • Kessler, H., Ballarini, R., Mullen, R.L., Kuhn, L.T. and Heuer, A.H. (1996). A biomimetic example of brittle toughening: (I) steady state multiple cracking. Computational Materials Science 5, 157–166.

    Article  Google Scholar 

  • Kotha, S.P., Kotha, S. and Guzelsu, N. (2000). A shear-lag model to account for interaction effects between inclusions in composites reinforced with rectangular platelets. Composites Science and Technology 60, 2147–2158.

    Article  Google Scholar 

  • Landis, W.J. (1995). The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16, 533–544.

    Article  Google Scholar 

  • Landis, W.J., Hodgens, K.J., Song, M.J., Arena, J., Kiyonaga, S., Marko, M., Owen, C., and McEwen, B.F. (1996). Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high voltage electron microscopy and three dimensional imaging. Journal of Structural Biology 117, 24–35.

    Article  Google Scholar 

  • Liu, B., Zhang, L. and Gao, H. (2006). Poisson ratio can play a crucial role in mechanical properties of biocomposites. Mechanics of Materials, in press.

    Google Scholar 

  • Mano, J.F. (2005). Viscoelastic properties of bone: mechanical spectroscopy studies on a chicken model. iMaterials Science and Engineering C 25, 145–152.

    Article  Google Scholar 

  • Massabo, R. and Cox, B.N. (1999). Concepts for bridged mode II delamination cracks. Journal of the Mechanics and Physics of Solids 47, 1265–1300.

    Article  Google Scholar 

  • Menig, R., Meyers, M.H., Meyers, M.A. and Vecchio, K.S. (2000). Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Materialia 48, 2383–2398.

    Article  Google Scholar 

  • Menig, R., Meyers, M.H., Meyers, M.A. and Vecchio, K.S. (2001). Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells. Materials Science and Engineering A 297, 203–211.

    Article  Google Scholar 

  • Mori, T. and Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metalurgica 21, 571–574.

    Article  Google Scholar 

  • Mulmule, S.V. and Dempsey, J.P. (2000). LEFM size requirement for the fracture testing of sea ice. International Journal of Fracture 102, 85–98.

    Article  Google Scholar 

  • Needleman, A. (1987) A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics 54, 525–531.

    Google Scholar 

  • Neves, N.M. and Mano, J.F. (2005). Structure/mechanical behavior relationships in crossed-lamellar sea shells. Materials Science and Engineering C 25, 113–118.

    Article  Google Scholar 

  • Okumura, K. and de Gennes, P.-G. (2001). Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures. European Physical Journal E 4, 121–127.

    Article  Google Scholar 

  • Pugno, N.M. and Ruoff, R.S. (2004). Quantized fracture mechanics. Philosophical Magazine 84, 2829–2845.

    Article  Google Scholar 

  • Rho, J.Y., Kuhn-Spearing, L. and Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics 20, 92–102.

    Article  Google Scholar 

  • Rice, J.R. (1980). The Mechanics of Earthquake Rupture. International School of Physics “E. Fermi”, Course 78, 1979: Italian Physical Society/North Holland Publ. Co.

    Google Scholar 

  • Roschger, P., Grabner, B.M., Rinnerthaler, S., Tesch, W., Kneissel, M., Berzlanovich, A., Klaushofer, K. and Fratzl, P. (2001). Structural development of the mineralized tissue in the human L4 vertebral body. Journal of Structural Biology 136, 126–136.

    Article  Google Scholar 

  • Roschger, P., Matsuo, K., Misof, B.M., Tesch, W., Jochum, W., Wagner, E.F., Fratzl, P. and Klaushofer, K. (2004) Normal mineralization and nanostructure of sclerotic bone in mice overexpressing Fra-1. Bone 34, 776–782.

    Article  Google Scholar 

  • Smith, B.L., Schaeffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E. and Hansma, P.K. (1999). Molecular mechanistic origin of the toughness of natural adhesive, fibres and composites. Nature 399, 761–763.

    Article  Google Scholar 

  • Song, F., Soh, A.K. and Bai, Y.L. (2003). Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3623–3631.

    Article  Google Scholar 

  • Suo, Z., Ho, S. and Gong, X. (1993). Notch ductile-to-brittle transition due to localized inelastic band. Journal of Engineering Materials and Technology 115, 319–326.

    Google Scholar 

  • Tada, J., Paris, P.C. and Irwin, G.R. (1973). The Stress Analysis of Cracks Handbook. Del Research Corporation, St. Louis (2nd edition, 1985).

    Google Scholar 

  • Tang, R.K., Wang, L.J., Orme, C.A., Bonstein, T., Bush, P.J. and Nancollas, G.H. (2004). Dissolution at the nanoscale: Self-preservation of biominerals. Angewandte Chemie-International Edition 43, 2697–2701.

    Article  Google Scholar 

  • Tang, T., Hui, C.-Y. and Glassmaker, N.J. (2005) Can a fibrillar interface be stronger and tougher than a non-fibrillar one? Journal of the Royal Society Interface 2, 505–516.

    Article  Google Scholar 

  • Tesch, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K. and Fratzl, P. (2001). Graded microstructure and mechanical properties of human crown dentin. Calcified Tissue International 69, 147–157.

    Article  Google Scholar 

  • Thompson, J.B., Kindt, J.H., Drake, B., Hansma, H.G., Morse, D.E. and Hansma, P.K. (2001) Bone indentation recovery time correlates with bond reforming time. Nature 414, 773–776.

    Article  Google Scholar 

  • Tvergaard, V. and Hutchinson, J.W. (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. Journal of the Mechanics and Physics of Solids 40, 1377–1397.

    Article  Google Scholar 

  • Wang, R.Z., Suo, Z., Evans, A.G., Yao, N. and Aksay, I.A. (2001). Deformation mechanisms in nacre. Journal of Materials Research 16, 2485–2493.

    Google Scholar 

  • Wang, L.J., Tang, R.K., Bonstein, T., Orme, C.A., Bush, P.J. and Nancollas, G.H. (2005). A new model for nanoscale enamel dissolution. Journal of Physical Chemistry B 109, 999–1005.

    Article  Google Scholar 

  • Warshawsky, H. (1989). Organization of crystals in enamel. Anatomical Record 224, 242–262.

    Article  Google Scholar 

  • Weiner, S. and Wagner, H.D. (1998). The material bone: structure-mechanical function relations. Annual Review of Materials Science 28, 271–298.

    Article  Google Scholar 

  • Xu, X.P. and Needleman, A. (1994). Numerical simulations of fast crack-growth in brittle solids. Journal of the Mechanics and Physics of Solids 42, 1397–1434.

    Article  Google Scholar 

  • Yao, H. and Gao, H. (2006). Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. Journal of the Mechanics and Physics of Solids, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Gao, H. (2006). Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. In: Carpinteri, A., Mai, YW., Ritchie, R.O. (eds) Advances in Fracture Research. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5423-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5423-5_8

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4626-1

  • Online ISBN: 978-1-4020-5423-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics