Skip to main content

THE ARITHMETIC THEORY OF QUANTUM MAPS

  • Conference paper
Equidistribution in Number Theory, An Introduction

Part of the book series: NATO Science Series ((NAII,volume 237))

  • 2136 Accesses

Abstract

In these lectures I describe in detail the quantization of linear symplectic maps of the torus, as a continuation of De Bievre’s lectures (De Bi`evre, 2006). I will then survey the problem of quantum equidistribution for this model. This model was introduced by Hannay and Berry (Hannay and Berry, 1980). It turns out that it has a rich arithmetic structure, and its study uses several ingredients in modern number theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bourgain, J. (2006) A remark on quantum ergodicity for cat maps, preprint.

    Google Scholar 

  • Bouzouina, A. and De Bièvre, S. (1996) Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Comm. Math. Phys. 178, 83–105.

    Article  MATH  MathSciNet  Google Scholar 

  • Colin de Verdière, Y. (1985) Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102, 497–502.

    Article  MATH  MathSciNet  Google Scholar 

  • De Bièvre, S. (2006) An introduction to quantum equidistribution, in this book.

    Google Scholar 

  • Degli Esposti, M., Graff, S., and Isola, S. (1995) Classical limit of the quantized hyperbolic toral automorphisms, Comm. Math Phys. 167, 471–507.

    Article  MATH  MathSciNet  Google Scholar 

  • Faure, F., Nonnenmacher, S., and De Bièvre, S. (2003) Scarred eigenstates for quantum cat maps of minimal periods, Comm. Math. Phys. 239, 449–492.

    Article  MATH  MathSciNet  Google Scholar 

  • Friedlander, J. (2006) Uniform distribution, exponential sums and crypography, in this book.

    Google Scholar 

  • Gurevich, S. and Hadani, R. (2003) The two dimensional Hannay—Berry model, arXiv:mathph/0312039.

    Google Scholar 

  • Gurevich, S. and Hadani, R. (2006) Proof of the Kurlberg—Rudnick Rate Conjecture, C. R. Math. Acad. Sci. Paris 342, 69–72.

    MathSciNet  Google Scholar 

  • Hannay, J. H. and Berry, M. V. (1980) Quantization of linear maps on a torus - Fresnel diffraction by a periodic grating, Physica D 1, 267–291.

    Article  MathSciNet  Google Scholar 

  • Kelmer, D. (2005) Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus, arXiv:math-ph/0510079.

    Google Scholar 

  • Kurlberg, P. (2003) On the order of unimodular matrices modulo integers, Acta Arith. 110, 141–151.

    Article  MATH  MathSciNet  Google Scholar 

  • Kurlberg, P. and Rudnick, Z. (2000) Hecke theory and equidistribution for the quantization of linear maps of the torus, Duke Math. J. 103, 47–78.

    Article  MATH  MathSciNet  Google Scholar 

  • Kurlberg, P. and Rudnick, Z. (2001) On quantum ergodicity for linear maps of the torus, Commun. Math. Phys. 222, 201–227.

    Article  MATH  MathSciNet  Google Scholar 

  • Lindenstrauss, E. (2006) Three examples how to use measure classification in number theory, in this book.

    Google Scholar 

  • Mezzadri, F. (2002) On the multiplicativity of quantum cat maps, Nonlinearity 15, 905–922.

    Article  MATH  MathSciNet  Google Scholar 

  • Rudnick, Z. and Sarnak, P. (1994) The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math Phys. 161, 195–213.

    Article  MATH  MathSciNet  Google Scholar 

  • Schnirelman, A. (1974) Ergodic properties of eigenfunctions, Usp. Math. Nauk 29, 181–182.

    Google Scholar 

  • Zelditch, S. (1987) Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55, 919–941.

    Article  MATH  MathSciNet  Google Scholar 

  • Zelditch, S. (1996) Quantum ergodicity of C*-dynamical systems, Comm. Math.Phys. 177, 507–528.

    Article  MATH  MathSciNet  Google Scholar 

  • Zelditch, S. (1997) Index and dynamics of quantized contact transformations, Ann. Inst. Fourier (Grenoble) 47, 305–363.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Rudnick, Z. (2007). THE ARITHMETIC THEORY OF QUANTUM MAPS. In: Granville, A., Rudnick, Z. (eds) Equidistribution in Number Theory, An Introduction. NATO Science Series, vol 237. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5404-4_15

Download citation

Publish with us

Policies and ethics