A TWO-FRACTAL OVERLAP MODEL OF EARTHQUAKES

  • Bikas K. Chakrabarti
  • Arnab Chatterjee
Part of the Springer Proceedings in Physics book series (SPPHY, volume 111)

Abstract

We introduce here the two-fractal model of earthquake dynamics. As the fractured surfaces have self-affine properties, we consider the solid-solid interface of the earth’s crust and the tectonic plate below as fractal surfaces. The overlap or contact area between the two surfaces give a measure of the stored elastic energy released during a slip. The overlap between two fractals change with time as one moves over the other and we show that the time average of the overlap distribution follows a Gutenberg-Richter like power-law, with similar exponent value.

Keywords

Lithosphere Geophysics Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bak P. (1997) How Nature Works, Oxford Univ. Press, Oxford.Google Scholar
  2. Bhattacharyya P. (2005) Physica A 348, 199.CrossRefMathSciNetADSGoogle Scholar
  3. Bhattacharyya P., Chatterjee A., Chakrabarti B. K. (2005) arXiv:physics/0510038.Google Scholar
  4. Brown S. R., Scholz C. H. (1985) J. Geophys. Res. 90, 12575.ADSCrossRefGoogle Scholar
  5. Burridge R., Knopoff L. (1967) Bull. Seismol. Soc. Am. 57, 341.Google Scholar
  6. Carlson J. M., Langer J. S., Shaw B. E. (1994) Rev. Mod. Phys. 66, 657.CrossRefADSMATHGoogle Scholar
  7. Chakrabarti B. K., Benguigui L. G. (1997) Statistical Physics of Fracture and Breakdown in Disorder Systems Oxford Univ. Press, Oxford.Google Scholar
  8. Chakrabarti B. K., Stinchcombe R. B. (1999) Physica A 270, 27.CrossRefADSGoogle Scholar
  9. De Rubeis V., Hallgass R., Loreto V., Paladin G., Pietronero L., Tosi P. (1996) Phys. Rev. Lett. 76, 2599.CrossRefADSGoogle Scholar
  10. Gutenberg B., Richter C. F. (1944) Bull. Seismol. Soc. Am. 34, 185.Google Scholar
  11. Gutenberg B., Richter C. F. (1954) Seismicity of the Earth, Princeton Univ. Press, Princeton.Google Scholar
  12. Knopoff L. (2000) Proc. Natl. Acad. Sci. USA. 97, 11880.CrossRefADSGoogle Scholar
  13. Kostrov B. V., Das S. (1990) Principles of Earthquake Source Mechanics, Cambridge Univ. Press, Cambridge.Google Scholar
  14. Okubo P. G., Aki K. (1987) J. Geophys. Res. 92, 345.ADSCrossRefGoogle Scholar
  15. Olami Z., Feder H. J. S., Christensen K. (1992) Phys. Rev. Lett. 68, 1244.CrossRefADSGoogle Scholar
  16. Pradhan S., Chakrabarti B. K., Ray P., Dey M. K. (2003) Physica Scripta T106, 77.CrossRefADSMATHGoogle Scholar
  17. Pradhan S., Chaudhuri P., Chakrabarti B. K. (2004) Continuum Models and Discrete Systems.Google Scholar
  18. Bergman D. J., and Inan E. Eds, Nato Sc. Series, Kluwer Academic Publishers, Dordrecht, pp.245–250; cond-mat/0307735.Google Scholar
  19. Sahimi M. (1993) Rev. Mod. Phys. 65, 1393.CrossRefADSGoogle Scholar
  20. Scholz C. H., Mandelbrot B. B. Eds. (1989) Fractals in Geophysics, Birkhaüser, Basel.Google Scholar
  21. Scholz C. H. (1990), The Mechanics of Earthquake and Faulting, Cambridge Univ. Press, Cambridge.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Bikas K. Chakrabarti
    • 1
  • Arnab Chatterjee
    • 1
  1. 1.Theoretical Condensed Matter Physics Division and Centre for Applied Mathematics and Computational ScienceSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations