Skip to main content

The response of Ceratophyllum demersum L. and Myriophyllum spicatum L. to reduced, ambient, and enhanced ultraviolet-B radiation

  • Chapter
Macrophytes in Aquatic Ecosystems: From Biology to Management

Part of the book series: Developments in Hydrobiology ((DIHY,volume 190))

  • 1044 Accesses

Abstract

The response of Ceratophyllum demersum and Myriophyllum spicatum to three levels of UV-B radiation — reduced (ca. 50% reduction), ambient and enhanced UV-B radiation, simulating 17% ozone depletion — is discussed. The research revealed that UV-B stimulated the production of UV-B absorbing compounds in C. demersum, but not in M. spicatum. The relative amount of UV-B absorbing compounds was about four times lower in C. demersum. Enhanced UV-B also affected respiratory potential in C. demersum (on average 3.7 mg O2/gDM/h), but no effect on M. spicatum (on average 5.5 mg O2/gDM/h) was detected. Increased need for energy revealed that UV-B radiation exerted stress in C. demersum. No changes in chlorophyll a and no disturbance to photochemical efficiency due to UV-B were observed in either species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amthor, J. S., 1995. Higher plant respiration and its relationship to photosynthesis. In Schulze, E. D. & M. M. Caldwell (eds), Ecophysiology of Photosynthesis. Springer-Verlag, Berlin, Heidelberg-New York.

    Google Scholar 

  • Bjö rn, L. O., 1999. Effects of ozone depletion and increased ultraviolet-b radiation on terrestrial plants. In K. Baumstark (ed.), Fundamentals for the Assessment of Risks from Environmental radiation. Kluwer Academic Publishers, 463–470.

    Google Scholar 

  • Björn, L. O. & T. M. Murphy, 1985. Computer calculation of solar ultraviolet radiation at ground level. Physiologie Végétale 23(5): 555–561.

    Google Scholar 

  • Björn, L. O. & A. H. Teramura, 1993. Simulation of daylight ultraviolet radiation and effects of ozone depletion. In Young, A. R. (ed.), Environmental UV Photobiology. Plenum Press, New York, 41–71.

    Google Scholar 

  • Caldwell, M. M., 1968. Solar ultraviolet radiation as an ecological factor for alpine plants. Ecological Monographs 38: 243–268.

    Article  Google Scholar 

  • Gaberščik, A., M. Novak, T. Trošt, Z. Mazej, M. Germ & L. O. Bjőrn, 2001. The influence of enhanced UV-B radiation on the spring geophyte Pulmonaria officinalis. Plant Ecology 154: 51–56.

    Google Scholar 

  • Gaberščik, A., M. Vončina, T. Trošt, M. Germ & L. O. Bjőrn, 2002. Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient and enhanced UV-B radiation. Journal of Photochemistry and Photobiology B Biology 66: 30–36.

    Article  Google Scholar 

  • Germ, M., D. Drmaž, M. Šiško & A. Gaberščik, 2002a. Effects of UV-B radiation on green alga Scenedesmus quadricauda: growth rate, UV-B absorbing compounds and potential respiration in phosporus rich and phosporus poor medium. Phyton (Horn Austria) 42: 25–37.

    CAS  Google Scholar 

  • Germ, M., Z. Mazej, A. Gaberščik & D.-P. Häder, 2002b. The influence of enhanced UV-B radiation on Batrachium trichophyllum and Potamogeton alpinus-aquatic macrophytes with amphibious character. Journal of Photochemistry and Photobiology B Biology 66: 37–46.

    Article  CAS  Google Scholar 

  • Häder, D.-P., H. D. Kumar, R. C. Smith & R. C. Worrest, 1998. Effects on aquatic ecosystems. In Environmental Effects of Ozone Depletion. UNEP, Journal of Photochemistry and Photobiology B Biology 46: 53–68.

    Article  Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophometric equations for determining chlorophylls a,b,c1 and c2 in higher plants, algae and natural phytoplankton. Biochemical Physiology Pflanzen (BPP), Bd, 167, 8: 191–194.

    Google Scholar 

  • Kenner, R. A. & S. I. Ahmed, 1975. Measurements of electron transport activities in marine phytoplankton. Marine Biology 33: 119–127.

    Article  CAS  Google Scholar 

  • Les, D. H., 1988. The origin and affinities of the Ceratophyllaceae. Taxon 37(2): 326–345.

    Article  Google Scholar 

  • Les, D. H., D. K. Garvin & C. F. Wimpee, 1991. Molecular evolutionary history of ancient aquatic angiosperms. Proceedings of the National Academy Science USA 88: 10119–10123.

    Google Scholar 

  • Martinčič, A., T. Wraber, N. Jogan, V. Ravnik, A. Podobnik, B. Turk & B. Vreš, 1999. Mala flora Slovenije. Tehniška založ ba Slovenije, 845 pp.

    Google Scholar 

  • Nichols, S. A. & B. H. Shaw, 1986. Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus, and Elodea canadensis. Hydrobiologia 131: 3–21.

    Article  Google Scholar 

  • Olsson, L., 1999. Modification of flavonoid content and photosynthesis by ultraviolet-B radiation. Atrazine-tolerant and-sensitive cultivars of Brassica napus. Photochemistry 49(4): 1021–1028.

    Article  Google Scholar 

  • Packard, T. T., 1971. The measurement of respiratory electrontransport activity in marine phytoplankton. Journal of Marine Research 29(3): 235–243.

    Google Scholar 

  • Rozema, J., J. van de Staaij, L. O. Björn & M Caldwell, 1997. UV-B as an environmental factor in plant life: stress and regulation. Tree 12(1): 22–28.

    Google Scholar 

  • Schreiber, U., W. Bilger & C. Neubauer, 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Schulze, E. D. & M. M. Caldwell (eds), Ecophysiology of Photosynthesis. Springer-Verlag, Berlin, Heidelberg, New York, 49–61.

    Google Scholar 

  • Webster, S. D., 1991. A chromatographic investigation of the flavonoids of Ranunculus L. subgenus Batrachium (DC.) A. Gray (water buttercups) and selected species in subgenus Ranunculus. Aquatic Botany 40: 11–26.

    Article  CAS  Google Scholar 

  • Xiong, F., 2001. Evidence that UV-B tolerance of the photosynthetic apparatus in microalgae is related to the D1-turnover mediated repair cycle in vivo. Plant Physiology 158: 285–294.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Germ, M., Masej, Z., Gaberščik, A., Sedej, T. (2006). The response of Ceratophyllum demersum L. and Myriophyllum spicatum L. to reduced, ambient, and enhanced ultraviolet-B radiation. In: Caffrey, J.M., Dutartre, A., Haury, J., Murphy, K.J., Wade, P.M. (eds) Macrophytes in Aquatic Ecosystems: From Biology to Management. Developments in Hydrobiology, vol 190. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5390-0_7

Download citation

Publish with us

Policies and ethics