Skip to main content

Evolution of the Cellulose Synthase (CesA) Gene Family: Insights from Green Algae and Seedless Plants

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appenzeller L., Doblin M., Barreiro R., Wang H., Niu X., Kollipara K., Carrigan L., Tomes D., Chapman M., and Dhugga K.S. 2004. Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11:287–299.

    CAS  Google Scholar 

  • Arioli T., Peng L., Betzner A.S., Burn J., Wittke W., Herth W., Camilleri C., Höfte H., Plazinski J., Birch R., Cork A., Glover J., Redmond J., and Williamson R.E. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720.

    CAS  Google Scholar 

  • Bhattacharya D., Weber K., An S.S., and Berning-Koch W. 1998. Actin phylogeny identifies Mesostigma viride as a flagellate ancestor of the land plants. J Mol Evol 47:544–550.

    CAS  Google Scholar 

  • Bhattacharya D., Yoon H.S., and Hackett J.D. 2004. Photosynthetic eukaryotes unite: endosymbiosis connects the dots. BioEssays 26:50–60.

    Google Scholar 

  • Blanton R.L., Fuller D., Iranfar N., Grimson M.J., and Loomis W.F. 2000. The cellulose synthase gene of Dictyostelium. Proc Natl Acad Sci USA 97:2391–2396.

    CAS  Google Scholar 

  • Brown, Jr. R.M., 1985. Cellulose microfibril assembly and orientation: Recent developments. J Cell Sci (Suppl.) 2:13–32.

    Google Scholar 

  • Brown, Jr. R.M., 1990. Algae as tools in studying the biosynthesis of cellulose, nature’s most abundant macromolecule. In: Wiessner W., Robinson D.G., and Starr R.C. (eds.) Experimental Phycology. Cell Walls and Surfaces, Reproduction, Photosynthesis. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona, pp. 20–39.

    Google Scholar 

  • Brown, Jr. R.M., Haigler C.H., Suttie J., White A.R., Roberts E., Smith C., Itoh T., and Cooper K. 1983. The biosynthesis and degradation of cellulose. J App Polymer Sci 37:33–78.

    CAS  Google Scholar 

  • Brown, Jr. R.M., and Montezinos D. 1976. Cellulose microfibrils: Visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci USA 73:143–147.

    CAS  Google Scholar 

  • Brown, Jr. R.M., Willison J.H.M., and Richardson C.L. 1976. Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569.

    CAS  Google Scholar 

  • Burn J.E., Hocart C.H., Birch R.J., Cork A.C., and Williamson R.E. 2002. Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol 129:797–807.

    CAS  Google Scholar 

  • Burton R.A., Shirley N.J., King B.J., Harvey A.J., and Fincher G.B. 2004. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134:224–236.

    CAS  Google Scholar 

  • Carlquist S. and Schneider E.L. 2001. Vessels in ferns: structural, ecological, and evolutionary significance. Am J Bot 88:1–13.

    Google Scholar 

  • Carpita N. and Vergara C. 1998. A recipe for cellulose. Science 279:672–673.

    CAS  Google Scholar 

  • Cooke T.J., Poli D., Sztein A.E., and Cohen J.D. 2002. Evolutionary patterns in auxin action. Plant Mol Biol 49:319–338.

    CAS  Google Scholar 

  • Cove D. 2005. The moss Physcomitrella patens. Annu Rev Genet 39:339–358.

    CAS  Google Scholar 

  • Delmer D.P. 1987. Cellulose biosynthesis. Ann Rev Plant Physiol 38:259–290.

    CAS  Google Scholar 

  • Delmer D.P. 1999. Cellulose biosynthesis: Exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276.

    CAS  Google Scholar 

  • Desprez T., Vernhettes S., Fagard M., Refregier G., Desnos T., Aletti E., Py N., Pelletier S., and Höfte H. 2002. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol 128:482–490.

    CAS  Google Scholar 

  • Dhugga K.S., Barreiro R., Whitten B., Stecca K., Hazebroek J., Randhawa G.S., Dolan M., Kinney A.J., Tomes D., Nichols S., and Anderson P. 2004. Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366.

    CAS  Google Scholar 

  • Djerbi S., Aspeborg H., Nilsson P., Sundberg B., Mellerowicz E., Blomqvist K., and Teeri T.T. 2004. Identification and expression analysis of genes encoding putative cellulose synthases (CesA) in the hybrid aspen, Populus tremula (L.) X P. tremuloides (Michx.). Cellulose 11:301–312.

    CAS  Google Scholar 

  • Doblin M.S., De Melis L., Newbigin E., Bacic A., and Read S.M. 2001. Pollen tubes of Nicotiana alata express two genes from different β-glucan synthase families. Plant Physiol 125:2040–2052.

    CAS  Google Scholar 

  • Doblin M.S., Kurek I., Jacob-Wilk D., and Delmer D.P. 2002. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420.

    CAS  Google Scholar 

  • Doblin M.S., Vergara C.E., Read S., Newbigin E., and Bacic A. 2003. Plant cell wall biosynthesis: making the bricks. In: Rose J.K.C. (ed.) The Plant Cell Wall, Vol 8. Blackwell, Oxford, pp. 183–222.

    Google Scholar 

  • Emons A.M.C., Derksen J., and Sassen M.M.A. 1992. Do microtubules orient plant cell wall microfibrils? Physiol Plant 84:486–493.

    CAS  Google Scholar 

  • Fagard M., Desnos T., Desprez T., Goubet F., Refregier G., Mouille G., Mccann M., Rayon C., Vernhettes S., and Höfte H. 2000. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2423.

    CAS  Google Scholar 

  • Favery B., Ryan E., Foreman J., Linstead P., Boudonck K., Steer M., Shaw P., and Dolan L. 2001. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev 15:79–89.

    CAS  Google Scholar 

  • Friedman W.E. and Cook M.E. 2000. The origin and early evolution of tracheids in vascular plants: integration of palaeobotanical and neobotanical data. Phil Trans R Soc Lond B 355:857–868.

    CAS  Google Scholar 

  • Gardiner J.C., Taylor N.G., and Turner S.R. 2003. Control of cellulose synthase complex localization in developing xylem. Plant Cell 15:1740–1748.

    CAS  Google Scholar 

  • Giddings T.H., Jr., Brower D.L., and Staehelin L.A. 1980. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327–339.

    Google Scholar 

  • Giddings T.H., Jr. and Staehelin L.A. 1991. Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. In: Lloyd C.W. (ed.) The Cytoskeletal Basis of Plant Growth and Form. Academic Press, New York, pp. 85–99.

    Google Scholar 

  • Graham L.E., Cook M.E., and Busse J.S. 2000. The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc Natl Acad Sci USA 97:4535–4540.

    CAS  Google Scholar 

  • Grimson M.J., Haigler C.H., and Blanton R.L. 1996. Cellulose microfibrils, cell motility, and plasma membrane protein organization change in parallel during culmination in Dictyostelium discoideum. J Cell Sci 109:3079–3087.

    CAS  Google Scholar 

  • Ha M.-A., Apperley D.C., Evans B.W., Huxham I.M., Jardine W.G., Vietor R.J., Reis D., Vian B., and Jarvis M.C. 1998. Fine structure in cellulose microfibrils: NMR evidence from onion and quince. Plant J 16:183–190.

    CAS  Google Scholar 

  • Haigler C.H. 1991. Relationship between polymerization and crystallization in microfibril biogenesis. In: Haigler C.H. and Weimer P.J. (eds.) Biosynthesis and Biodegradation of Cellulose. Marcel Dekker, New York, pp. 99–124.

    Google Scholar 

  • Haigler C.H. and Brown, Jr. R.M., 1986. Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134:111–120.

    Google Scholar 

  • Haigler C.H., Brown, Jr. R.M., and Benziman M. 1980. Calcofluor white ST alters the in vivo assembly of cellulose microfibrils. Science 210:903–906.

    CAS  Google Scholar 

  • Hamann T., Osborne E., Youngs H.L., Misson J., Nussaume L., and Somerville C. 2004. Global expression analysis of CESA and CSL genes in Arabidopsis. Cellulose 11:279–286.

    CAS  Google Scholar 

  • Hebant C. 1977. The Conducting Tissues of Bryophytes. J. Cramer, Vaduz, p. 157.

    Google Scholar 

  • Hepler P.K. 1981. Morphogenesis of tracheary elements and guard cells. In: Kiermayer O. (ed.) Cytomorphogenesis in Plants. Springer, Berlin, pp. 327–347.

    Google Scholar 

  • Herth W. 1983. Arrays of plasma-membrane “rosettes” involved in cellulose microfibril formation of Spirogyra. Planta 159:347–356.

    Google Scholar 

  • Herth W. 1985. Plasma-membrane rosettes involved in localized wall thickening during xylem vessel formation of Lepidium sativum L. Planta 164:12–21.

    Google Scholar 

  • Hohe A., Egener T., Lucht J.M., Holtorf H., Reinhard C., Schween G., and Reski R. 2004. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Curr Genet 44:339–347.

    CAS  Google Scholar 

  • Holland N., Holland D., Helentjaris T., Dhugga K.S., Xoconostle-Cazares B., and Delmer D.P. 2000. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol 123:1313–1323.

    CAS  Google Scholar 

  • Hotchkiss A.T., Jr. 1989. Cellulose biosynthesis: the terminal complex hypothesis and its relationship to other contemporary research topics. In: Lewis N.G. and Paice M.G. (eds.) Plant Cell Wall Polymers. Biogenesis and Biodegradation. American Chemical Society, Washington, DC, pp. 232–247.

    Google Scholar 

  • Hotchkiss A.T., Jr., Gretz M.R., Hicks K.B., and Brown, Jr. R.M., 1989. The composition and phylogenetic significance of the Mougeotia (Charophyceae) cell wall. J Phycol 25:646–654.

    CAS  Google Scholar 

  • Ingold E., Munetaka S., and Komamine A. 1988. Secondary cell wall formation: changes in cell wall constituents during the differentiation of isolated mesophyll cells of Zinnia elegans to tracheary elements. Plant Cell Physiol 29:295–303.

    CAS  Google Scholar 

  • Itoh T. 1990. Cellulose synthesizing complexes in some giant marine algae. J Cell Sci 95:309–319.

    CAS  Google Scholar 

  • Itoh T. and Brown, Jr. R.M., 1984. The assembly of cellulose microfibrils in Valonia macrophysa Kütz. Planta 160:372–381.

    Google Scholar 

  • Itoh T., O’neil R.M., and Brown, Jr. R.M., 1984. Interference of cell wall regeneration of Boergesenia forbesii protoplasts by Tinopal LPW, a fluorescent brightening agent. Protoplasma 123:174–183.

    CAS  Google Scholar 

  • Karol K.G., McCourt R.M., Cimino M.T., and Delwiche C.F. 2001. The closest living relatives of land plants. Science 294:2351–2353.

    CAS  Google Scholar 

  • Kenrick P. and Crane P.R. 1991. Water-conducting cells in early fossil land plants: implications for the early evolution of tracheophytes. Bot Gaz 152:335–356.

    Google Scholar 

  • Kiedaisch B.M., Blanton R.L., and Haigler C.H. 2003. Characterization of a novel cellulose synthesis inhibitor. Planta 217:922–930.

    CAS  Google Scholar 

  • Kimura S. and Itoh T. 1996. New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma 194:151–163.

    CAS  Google Scholar 

  • Kimura S. and Itoh T. 2004. Cellulose synthesizing terminal complexes in the ascidians. Cellulose 11:377–383.

    CAS  Google Scholar 

  • Kimura S., Laosinchai W., Itoh T., Cui X., Linder C.R., and Brown, Jr. R.M., 1999. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2085.

    CAS  Google Scholar 

  • Kurek I., Kawagoe Y., Jacob-Wilk D., Doblin M., and Delmer D. 2002. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci USA 99:11109–11114.

    CAS  Google Scholar 

  • Lai-Kee-Him J., Chanzy H., Muller M., Putaux J.L., Imai T., and Bulone V. 2002. In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J Biol Chem 277:36931–36939.

    CAS  Google Scholar 

  • Lemieux C., Otis C., and Turmel M. 2000. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403:649–652.

    CAS  Google Scholar 

  • Liang X. and Joshi C.P. 2004. Molecular cloning of ten distinct hypervariable regions from the cellulose synthase gene superfamily in aspen trees. Tree Physiol 24:543–550.

    CAS  Google Scholar 

  • Liepman A.H., Wilkerson C.G., and Keegstra K. 2005. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA 102:2221–2226.

    CAS  Google Scholar 

  • Ligrone R., Duckett J.G., and Renzaglia K.S. 2000. Conducting tissues and phyletic relationships of bryophytes. Phil Trans R Soc Lond B 355:795–813.

    CAS  Google Scholar 

  • Ligrone R., Vaughn K.C., Renzaglia K.S., Knox J.P., and Duckett J.G. 2002. Diversity in the distribution of polysaccharide and glycoprotein epitopes in the cell walls of bryophytes: new evidence for the multiple evolution of water-conducting cells. New Phytol 156:491–508.

    CAS  Google Scholar 

  • Martin W., Rujan T., Richly E., Hansen A., Cornelsen S., Lins T., Leister D., Stoebe B., Hasegawa M., and Penny D. 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251.

    CAS  Google Scholar 

  • Matthysse A.G., Deschet K., Williams M., Marry M., White A.R., and Smith W.C. 2004. A functional cellulose synthase from ascidian epidermis. Proc Natl Acad Sci USA 101:986–991.

    CAS  Google Scholar 

  • McCourt R.M. 1995. Green algal phylogeny. Trends Ecol Evol 10:159–163.

    Google Scholar 

  • Mizuta S. 1985. Evidence for the regulation of the shift in cellulose microfibril orientation in freeze-fractured plasma membrane of Boergesenia forbesii. Plant Cell Physiol 26:53–62.

    CAS  Google Scholar 

  • Mizuta S. and Brown, Jr. R.M., 1992. Effects of 2,6-dichlorobenzonitrile and Tinopal LPW on the structure of the cellulose synthesizing complexes of Vaucheria hamata. Protoplasma 166:200–207.

    CAS  Google Scholar 

  • Montezinos D. 1982. The role of the plasma membrane in cellulose microfibril assembly. In: Lloyd C.W. (ed.) The Cytoskeleton in Plant Growth and Development. Academic Press, London, pp. 147–162.

    Google Scholar 

  • Nakashima K., Yamada L., Satou Y., Azuma J., and Satoh N. 2004. The evolutionary origin of animal cellulose synthase. Dev Genes Evol 214:81–88.

    CAS  Google Scholar 

  • Neill A.A. 2005. A Cellulose synthase-like (CslD) gene from Coleochaete scutata. M.S. University of Rhode Island.

    Google Scholar 

  • Niklas K.J. 1992. Plant Biomechanics: An Engineeing Approach to Plant Form and Function. University of Chicago Press, Chicago, p. 622.

    Google Scholar 

  • Niklas K.J. 2004. The cell walls that bind the tree of life. BioScience 54:831–841.

    Google Scholar 

  • Nobles D.R., Jr. and Brown, Jr. R.M., 2004. The pivotal role of cyanobacteria in the evolution of cellulose synthases and cellulose synthase-like proteins. Cellulose 11:437–448.

    CAS  Google Scholar 

  • Nobles D.R., Romanovicz D.K., and Brown, Jr. R.M., 2001. Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127:529–542.

    CAS  Google Scholar 

  • Okuda K. 2002. Structure and phylogeny of cell coverings. J Plant Res 115:283–288.

    CAS  Google Scholar 

  • Okuda K. and Brown, Jr. R.M., 1992. A new putative cellulose-synthesizing complex of Coleochaete scutata. Protoplasma 168:51–63.

    CAS  Google Scholar 

  • Pear J.R., Kawagoe Y., Schreckengost W.E., Delmer D.P., and Stalker D.M. 1996. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642.

    CAS  Google Scholar 

  • Peng L., Kawagoe Y., Hogan P., and Delmer D. 2002. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science 295:147–150.

    CAS  Google Scholar 

  • Peng L., Xiang F., Roberts E., Kawagoe Y., Greve L.C., Kreuz K., and Delmer D.P. 2001. The experimental herbicide CGA 325 ‘615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline β-1,4-glucan associated with CesA protein. Plant Physiol 126:981–992.

    CAS  Google Scholar 

  • Perrin R.M. 2001. Cellulose: how many cellulose synthases to make a plant? Curr Biol 11:R213–R216.

    CAS  Google Scholar 

  • Pryer K.M., Schneider H., Zimmer E.A., and Banks J.A. 2002. Deciding among green plants for whole genome studies. Trends Plant Sci 7:550–554.

    CAS  Google Scholar 

  • Read S.M. and Bacic T. 2002. Prime time for cellulose. Science 295:59–60.

    CAS  Google Scholar 

  • Reiss H.D., Schnepf E., and Herth W. 1984. The plasma membrane of the Funaria caulonema tip cell: morphology and distribution of particle rosettes, and the kinetics of cellulose synthesis. Planta 160:428–435.

    CAS  Google Scholar 

  • Richmond T.A. and Somerville C.R. 2000. The cellulose synthase superfamily. Plant Physiol 124:495–498.

    CAS  Google Scholar 

  • Richmond T.A. and Somerville C.R. 2001. Integrative approaches to determining Csl function. Plant Mol Biol 47:131–143.

    CAS  Google Scholar 

  • Robert S., Mouille G., and Hofte H. 2004. The mechanism and regulation of cellulose synthesis in primary walls: lessons from cellulose-deficient Arabidopsis mutants. Cellulose 11:351–364.

    CAS  Google Scholar 

  • Roberts A.W., Bushoven J., Roberts E., and Goss C. 2004. Investigating the organization and function of the cellulose-synthesizing terminal complex using Physcomitrella patens. Plant Biology 2004 Abstract #624.

    Google Scholar 

  • Roberts A.W. and Roberts E. 2004. Cellulose synthase (CesA) genes in algae and seedless plants. Cellulose 11:419–435.

    CAS  Google Scholar 

  • Roberts A.W., Roberts E.M., and Delmer D.P. 2002. Cellulose synthase (CesA) genes in the green alga Mesotaenium caldariorum. Eukaryotic Cell 1:847–855.

    CAS  Google Scholar 

  • Roberts E., Saxena I.M., and Brown, Jr. R.M., 1989. Biosynthesis of cellulose II. In: Schuerch C. (ed.) Cellulose and Wood: Chemistry and Technology. Wiley, New York, pp. 689–704.

    Google Scholar 

  • Roberts E.M. 1991. Biosynthesis of cellulose II and related carbohydrates. PhD dissertation. University of Texas

    Google Scholar 

  • Ross P., Mayer R., and Benziman M. 1991. Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58.

    CAS  Google Scholar 

  • Saxena I.M. and Brown, Jr. R.M., 1995. Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum. J Bacteriol 177:5276–5283.

    CAS  Google Scholar 

  • Saxena I.M. and Brown, Jr. R.M., 2005. Cellulose biosynthesis: current views and evolving concepts. Ann Bot (Lond) 96:9–21.

    CAS  Google Scholar 

  • Saxena I.M., Brown, Jr. R.M., and Dandekar T. 2001. Structure–function characterization of cellulose synthase: relationship to other glycosyltransferases. Phytochemistry 57:1135–1148.

    CAS  Google Scholar 

  • Saxena I.M., Brown, Jr. R.M., Fevre M., Geremia R.A., and Henrissat B. 1995. Multidomain architecture of β-glycosyl transferases: implications for mechanism of action. J Bacteriol 177:1419–1424.

    CAS  Google Scholar 

  • Saxena I.M., Lin F.C., and Brown, Jr. R.M., 1990. Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol Biol 15:673–683.

    CAS  Google Scholar 

  • Schaefer D. and Zryd J.-P. 2004. Principles of targeted mutagenesis in the moss Physcomitrella patens. In: Wood A.J., Oliver M.J., and Cove D.J. (eds.) New Frontiers in Bryology: Physiology, Molecular Biology and Functional Genomics. Kluwer, Dordrecht, pp. 37–49.

    Google Scholar 

  • Schaefer D.G. 2002. A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53:477–501.

    CAS  Google Scholar 

  • Scheible W.-R., Eshed R., Richmond T., Delmer D., and Somerville C. 2001. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci USA 98:10079–10084.

    CAS  Google Scholar 

  • Schneider B. and Herth W. 1986. Distribution of plasma membrane rosettes and kinetics of cellulose formation in xylem development of higher plants. Protoplasma 131:142–152.

    CAS  Google Scholar 

  • Sugiyama J., Harada H., Fujiyoshi Y., and Uyeda N. 1985. Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168.

    Google Scholar 

  • Tanaka K., Murata K., Yamazaki M., Onosato K., Miyao A., and Hirochika H. 2003. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73–83.

    CAS  Google Scholar 

  • Taylor N.G., Howells R.M., Huttly A.K., Vickers K., and Turner S.R. 2003. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455.

    CAS  Google Scholar 

  • Taylor N.G., Laurie S., and Turner S.R. 2000. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–2539.

    CAS  Google Scholar 

  • Taylor N.G., Scheible W.-R., Cutler S., Somerville C.R., and Turner S.R. 1999. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–779.

    CAS  Google Scholar 

  • Tsekos I. 1996. The supramolecular organization of red algal cell membranes and their participation in the biosynthesis and secretion of extracellular polysaccharides: a review. Protoplasma 193:10.

    CAS  Google Scholar 

  • Tsekos I. 1999. The sites of cellulose synthesis in algae: Diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655.

    CAS  Google Scholar 

  • Turmel M., Otis C., and Lemieux C. 2002. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. Mol Biol Evol 19:24–38.

    CAS  Google Scholar 

  • Umeda Y., Hirano A., Ishibashi M., Akiyama H., Onizuka T., Ikeuchi M., and Inoue Y. 1999. Cloning of cellulose synthase genes from Acetobacter xylinum JCM 7664: implication of a novel set of cellulose synthase genes. DNA Res 6:109–115.

    CAS  Google Scholar 

  • Vergara C.E. and Carpita N.C. 2001. β-D-glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1->3),(1->4)β-D-glucan synthase. Plant Mol Biol 47:145–160.

    CAS  Google Scholar 

  • Wang X., Cnops G., Vanderhaeghen R., De Block S., Van Montagu M., and Van Lijsebettens M. 2001. AtCSLD3, a cellulose synthase-like gene important for root hair growth in Arabidopsis. Plant Physiol 126:575–586.

    CAS  Google Scholar 

  • Wong H.C., Fear A.L., Calhoon R.D., Eichinger G.H., Mayer R., Amikam D., Benziman M., Gelfand D.H., Meade J.H., Emerick A.W., Bruner R., Ben-Bassat A., and Tal R. 1990. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci USA 87:8130–8134.

    CAS  Google Scholar 

  • Zogaj X., Nimtz M., Rohde M., Bokranz W., and Romling U. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Roberts, A.W., Roberts, E. (2007). Evolution of the Cellulose Synthase (CesA) Gene Family: Insights from Green Algae and Seedless Plants. In: Brown, R.M., Saxena, I.M. (eds) Cellulose: Molecular and Structural Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5380-1_2

Download citation

Publish with us

Policies and ethics