Skip to main content

Biomedical Applications of Microbial Cellulose in Burn Wound Recovery

  • Chapter
Cellulose: Molecular and Structural Biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez O.M., Patel M., Booker J., and Markowitz L. 2004. Effectiveness of biocellulose wound dressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients. Wounds 16:224–233.

    Google Scholar 

  • Balasubramani M., Kumar T.R., and Babu M. 2001. Skin substitutes: a review. Burns 27:534–544.

    Article  CAS  Google Scholar 

  • Bielecki S., Krystynowicz A., Turkiewicz M., and Kalinowska H. 2002. Bacterial cellulose. In: Steinbuchel A. (ed.) Biopolymers: Vol. 5. Polysaccharides I. Wiley-VCH Verlag GmbH, Munster, Germany, pp. 37–90.

    Google Scholar 

  • Brown, Jr. R.M. 1996. The biosynthesis of cellulose. Pure Appl Chem 10:1345–1373.

    Google Scholar 

  • Czaja W., Romanovicz D., and Brown, Jr. R.M. 2004. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411.

    Article  CAS  Google Scholar 

  • Delatte S.J., Evans J., Hebra A., Adamson W., Othersen H.B., and Tagge E.P. 2001. Effectiveness of beta-glucan collagen for treatment of partial-thickness burns in children. J Pediatr Surg 36:113–118.

    Article  CAS  Google Scholar 

  • Demling R.H. and DeSanti L. 1999. Management of partial thickness facial burns (comparison of topical antibiotics and bio-engineered skin substitutes). Burns 25:256–261.

    Article  CAS  Google Scholar 

  • Fontana J.D., de Sousa A.M., Fontana C.K., Torriani I.L., Moreschi J.C., Gallotti B.J., de Sousa S.J., Narcisco G.P., Bichara J.A., and Farah L.F. 1990. Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24/25:253–264.

    Article  Google Scholar 

  • Gallin W.J. and Hepperle B. 1998. Burn healing in organ cultures of embryonic chicken skin: a model system. Burns 24:613–620.

    Article  CAS  Google Scholar 

  • Hartford C.F. 1997. Care of outpatient burns. In: Herndon D. (ed.) Total Burn Care. Saunders, Philadelphia, p. 71.

    Google Scholar 

  • Hestrin S. and Schramm M. 1954. Synthesis of cellulose by Acetobacter xylinum: II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352.

    CAS  Google Scholar 

  • Innes M.E., Umraw N., Fish J.S., Gomez M., and Cartotto R.C. 2001. The use of silver coated dressings on donor site wounds: a prospective, controlled matched pair study. Burns 27:621–627.

    Article  CAS  Google Scholar 

  • Jones I., Currie L., and Martin R. 2002. A guide to biological skin substitutes. Br J Plast Surg 55:185–193.

    Article  CAS  Google Scholar 

  • Klemm D., Schumann D., Udhardt U., and Marsch S. 2001. Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Progr Polym Sci 26:1561–1603.

    Article  CAS  Google Scholar 

  • Krystynowicz A., Czaja W., Pomorski L., Kołodziejczyk M., and Bielecki S. 2000. The evaluation of usefulness of microbial cellulose as wound dressing material. 14th Forum for Applied Biotechnology, Proceedings Part I, Meded Fac Landbouwwet-Rijksuniv Gent, Gent, Belgium, pp. 213–220.

    Google Scholar 

  • Krystynowicz A., Czaja W., Wiktorowska-Jezierska A., Gonçalves-MiKkiewicz M., Turkiewicz M., and Bielecki S. 2002. Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195.

    Article  CAS  Google Scholar 

  • Latarjet J. 1995. A simple guide to burn treatment. Burns 21:221–225.

    Article  CAS  Google Scholar 

  • Loss M., Wedler V., Künzi W., Meuli-Simmen C., and Meyer V.E. 2000. Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSA. Burns 26:644–652.

    Article  CAS  Google Scholar 

  • Manigandan C. and Dhanaraj P. 2004. An innovative, cost-effective, pressure-relieving device for burned ears. Burns 30:269–271.

    Article  CAS  Google Scholar 

  • Park S.N., Kim J.K., and Suh H. 2004. Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials 25:3689–3698.

    Article  CAS  Google Scholar 

  • Prasanna M., Mishra P., and Thomas C. 2004. Delayed primary closure of the burn wounds. Burns 30:169–175.

    Article  Google Scholar 

  • Quinn K.J., Courtney J.M., Evans J.H., Gaylor J.D.S., and Reid W.H. 1985. Principles of burn dressings. Biomaterials 6:369–377.

    Article  CAS  Google Scholar 

  • Ring D., Nashed W., and Dow T. 1986. Liquid loaded pad for medical applications. US Patent No. 4588400.

    Google Scholar 

  • Roques C. 2002. Pressure therapy to treat burn scars. Wound Repair Regen 10:122–125.

    Article  Google Scholar 

  • Ross P., Mayer R., and Benziman M. 1991. Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58.

    CAS  Google Scholar 

  • Ruiz-Cardona L., Sanzgiri Y.D., Benedetti L.M., Stella V.J., and Topp E.M. 1996. Application of benzyl hyaluronate membranes as potential wound dressings: evaluation of water vapour and gas permeabilities. Biomaterials 17:1639–1643.

    Article  CAS  Google Scholar 

  • Still J., Glat P., Silverstein P., Griswold J., and Mozingo D. 2003. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 29:837–841.

    Article  Google Scholar 

  • Svensson A., Nicklasson E., Harrah T., Panilaitis B., Kaplan D.L., Brittberg M., and Gatenholm P. 2005. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431.

    Article  CAS  Google Scholar 

  • Vloemans A.F.P.M., Soesman A.M., Kreis R.W., and Middelkoop E. 2001. A newly developed hydrofibre dressing, in the treatment of partial-thickness burns. Burns 27:167–173.

    Article  CAS  Google Scholar 

  • Walker M., Hobot J.A., Newman G.R., and Bowler P.G. 2003. Scanning electron microscopic examination of bacterial immobilization in a carboxymethyl cellulose (AQUACEL) and alginate dressings. Biomaterials 24:883–890.

    Article  CAS  Google Scholar 

  • Watanabe K., Tabuchi M., Morinaga Y., and Yoshinaga F. 1998. Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200.

    Article  CAS  Google Scholar 

  • Wu P., Fisher A.C., Foo P.P., Queen D., and Gaylor J.D.S. 1995. In vitro assessment of water vapour transmission of synthetic wound dressings. Biomaterials 16:171–175.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Czaja, W. et al. (2007). Biomedical Applications of Microbial Cellulose in Burn Wound Recovery. In: Brown, R.M., Saxena, I.M. (eds) Cellulose: Molecular and Structural Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5380-1_17

Download citation

Publish with us

Policies and ethics