Skip to main content

Cellulose Shapes

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen F.H. 2002. The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr Sect B 58:380–388.

    Article  CAS  Google Scholar 

  • Allinger N.L., Rahman M., and Lii J.-H. 1990. A molecular mechanics force field (MM3) for alcohols and ethers. J Amer Chem Soc 112:8293–8307.

    Article  CAS  Google Scholar 

  • Atalla R.H. and VanderHart D.L. 1984. Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285.

    Article  CAS  Google Scholar 

  • Berman H.M., Battistuz T., Bhat T.N., Bluhm W.F., Bourne P.E., Burkhardt K., Feng Z., Gilliland G.L., Iype L., Jain S., Fagan P., Marvin J., Padilla D., Ravichandran V., Schneider B., Thanki N., Weissig H., Westbrook J.D., and Zardecki, C. 2002. The protein data bank. Acta Crystallogr Sect D 58:899–907.

    Article  CAS  Google Scholar 

  • Chandrasekaran R. and Radha A. 1997. Molecular modeling of xanthan:galactomannan interactions. Carbohydr Polym 32:201–208.

    Article  CAS  Google Scholar 

  • Chanzy H. and Henrissat B. 1985. Undirectional degradation of valonia cellulose microcrystals subjected to cellulase action. FEBS Lett 184:285–288.

    Article  CAS  Google Scholar 

  • Chedin J. and Marsaudon A. 1954. Progress in the understanding of liquid reaction mediums, and interpretation of their reactions with cellulosic fibers: mercerization-nitration. Chim Ind (Paris) 71:55–68.

    CAS  Google Scholar 

  • Chu S.S.C. and Jeffrey G.A. 1968. The refinement of the crystal structures of β-D-glucose and cellobiose. Acta Crystallogr Sect C (Cryst. Struct. Commun.) 42:177–179.

    Google Scholar 

  • Dinand E., Vignon M., Chanzy H., and Heux L. 2002. Mercerization of primary wall cellulose and its implication for the conversion of cellulose I6cellulose II. Cellulose 9:7–18.

    Article  CAS  Google Scholar 

  • Ernst A. and Vasella A. 1996. Oligosaccharide analogs of polysaccharides. Part 8. Orthogonally protected cellobiose-derived dialkynes. A convenient method for the regioselective bromo- and protodegermylation of trimethylgermyl- and trimethylsilyl-protected dialkynes. Helv Chim Acta 79:1279–1294.

    Article  CAS  Google Scholar 

  • Ford Z.M., Stevens E.D., Johnson G.P., and French A.D. 2005. Determining the crystal structure of cellulose IIII by modeling. Carbohyr Res, 2005. Carbohydr Res 340:827–833.

    Article  CAS  Google Scholar 

  • French A.D. 1978. The crystal structure of native ramie cellulose. Carbohydr Res 61:67–80.

    Article  CAS  Google Scholar 

  • French A.D., Kelterer A.-M., Johnson G.P., Dowd M.K., and Cramer C.J. 2000. Constructing and evaluating energy surfaces of crystalline disaccharides. J Mol Graph Model 18:95–107.

    Article  CAS  Google Scholar 

  • French A.D., Kelterer A.-M., Johnson G.P., Dowd M.K., and Cramer C.J. 2001a. HF/6–31G* energy surfaces for disaccharide analogs. J Comput Chem 22:65–78.

    Article  CAS  Google Scholar 

  • French A.D., Johnson G.P., Kelterer A.-M., Dowd M.K., and Cramer C.J. 2001b. QM/MM distortion energies in di- and oligosaccharides complexed with proteins. Int J Quant Chem 84:416–425.

    Article  CAS  Google Scholar 

  • French A.D., Johnson G.P., Kelterer A.-M., Dowd M.K., and Cramer C.J. 2002. Quantum mechanics studies of the intrinsic conformation of trehalose. J Phys Chem A 106:4988–4997.

    Article  CAS  Google Scholar 

  • French A.D. and Johnson G.P. 2004a. What crystals of small analogs are trying to tell us about cellulose structure. Cellulose 11:5–22.

    Article  CAS  Google Scholar 

  • French A.D. and Johnson G.P. 2004b. Advanced conformational energy surfaces for cellobiose. Cellulose 11:449–462.

    Article  CAS  Google Scholar 

  • French A.D., Johnson G.P., Kelterer A.-M., and Csonka G.I. 2005. Fluorinated cellobiose and maltose as stand-ins for energy surface calculations. Tetrahedron Asymmetry, 2005. Tetrahedron Asymmetry 16:577–586.

    Article  CAS  Google Scholar 

  • Gessler K., Krauss N., Steiner T., Betzel C., Sarko A., and Saenger W. 1995. β-D-Cellotetraose hemihydrate as a structural model for cellulose II. An x-ray diffraction study. J Am Chem Soc 117:11397–11406.

    Article  CAS  Google Scholar 

  • Gessler K., Usón I., Takaha T., Krauss N., Smith S.M., Okada S., Sheldrick G.M., and Saenger W. 1999. V-Amylose at atomic resolution: x-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc Natl Acad Sci USA 96:4246–4251.

    Article  CAS  Google Scholar 

  • Hess K. and Trogus C. 1931. Zur Kenntis der Faserperiode bei Cellulosederivaten. Röntgenographische Untersuchungen an Cellulosederivaten X. Z Physikal Chem Bodenstein-Festband 11:385–391.

    Google Scholar 

  • Hieta K., Kuga S., and Usuda M. 1984. Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23:1807–1810.

    Article  CAS  Google Scholar 

  • Hirai A., Tsuji M., and Horii F. 2002. TEM study of band-like cellulose assemblies produced by Acetobacter xylinum at 4°C. Cellulose 9:105–113.

    Article  CAS  Google Scholar 

  • Katz J.R. and Hess K. 1927. The swelling and mercerizing of natural cellulose fibers in nitric acid “philanized” cotton. I. Röntgen spectrographic research. Z Phys Chem-Leipzig 122:126–136.

    CAS  Google Scholar 

  • Kolpak F. and Blackwell J. 1976. Determination of the structure of cellulose II. Macromolecules 9:273–278.

    Article  CAS  Google Scholar 

  • Kolpak F., Weih M., and Blackwell J. 1978. Mercerization of cellulose. 1. Determination of the structure of mercerized cotton. Polymer 19:123–131.

    Article  CAS  Google Scholar 

  • Koyama M., Helbert W., Imai T., Sugiyama J., and Henrissat B. 1997. Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94:9091–9095.

    Article  CAS  Google Scholar 

  • Kroon-Batenburg L.M.K., Bouma B., and Kroon J. 1996. Stability of cellulose structures studied by MD simulations. Could mercerized cellulose II be parallel? Macromolecules 29:5695–5699.

    Article  CAS  Google Scholar 

  • Kuga S., Takagi S., and Brown, Jr. R.M. 1993. Native folded-chain cellulose II. Polymer 34:3293–3297.

    Article  CAS  Google Scholar 

  • Langan P., Nishiyama Y., and Chanzy H. 2001. X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416.

    Article  CAS  Google Scholar 

  • Leung F., Chanzy H.D., Perez S., Marchessault R.H. 1976. Crystal structure of β-D-acetyl cellobiose. Canad J Chem 54:1365–1371.

    Article  CAS  Google Scholar 

  • Lii J.-H., Chen K.-H., Johnson G.P., French A.D., and Allinger N.L. 2005. The external-anomeric torsional effect. Carbohydr Res, 2005. Carbohydr Res 340:832–862.

    Article  CAS  Google Scholar 

  • Manley St., R.J. 1960. Crystallization of cellulose triacetate from solution. J Poly Sci 47:509–512.

    Article  Google Scholar 

  • Manley St., R.J. 1963. Growth and morphology of single crystals of cellulose triacetate. J Poly Sci A 1:1875–1892.

    Google Scholar 

  • Meader D., Atkins E.D.T., and Happey F. 1978. Cellulose trinitrate. Molecular conformation and packing considerations. Polymer 19:1371–1374.

    Article  CAS  Google Scholar 

  • Millane R.P. and Wang B. 1990. A cellulose-like conformation accessible to the xanthan backbone and implications for xanthan synergism. Carbohydr Poly 13:57–68.

    Article  CAS  Google Scholar 

  • Nishiyama Y., Kuga S., and Okano T. 2000. Mechanism of mercerization revealed by x-ray diffraction. J Wood Sci 46:452–457.

    Article  CAS  Google Scholar 

  • Nishiyama Y., Langan P., and Chanzy H. 2002. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082.

    Article  CAS  Google Scholar 

  • Nishiyama Y., Sugiyama J., Chanzy H., and Langan P. 2003a. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron x-ray and neutron fiber diffraction. J Amer Chem Soc 125:14300–14306.

    Article  CAS  Google Scholar 

  • Nishiyama Y., Kim U.-J., Kim D.-Y., Katsumata K.S., May R.P., and Langan P. 2003b. Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017.

    Article  CAS  Google Scholar 

  • Peralta-Inga Z., Johnson G.P., Dowd M.K., Rendleman J.A., Stevens E.D., and French A.D. 2002. The crystal structure of the α-cellobioseθ2 NaIθ2 H2O complex in the context of related structures and conformational analysis. Carbohydr Res 337:851–861.

    Article  CAS  Google Scholar 

  • Raymond S., Henrissat B., Qui D.T., Kvick A., and Chanzy H. 1995. The crystal structure of methyl β-cellotrioside monohydrate 0.25 ethanolate and its relationship to cellulose II. Carbohydr Res 277:209–229.

    Article  CAS  Google Scholar 

  • Rees D.A. and Skerrett R.J. 1968. Conformational analysis of cellobiose, cellulose and xylan. Carbohydr Res 7:334–348.

    Article  CAS  Google Scholar 

  • Sakon J., Adney W.S., Himmel M.E., Thomas S.R. and Karplus P.A. 1996. Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35:10648–10660.

    Article  CAS  Google Scholar 

  • Shibazaki H., Kuga S., and Okano T. 1997. Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87.

    Article  CAS  Google Scholar 

  • Shimanouchi T. and Mizushima S.-I. 1955. On the helical configuration of a polymer chain. J Chem Phys 33:707–711.

    Article  Google Scholar 

  • Simon I., Scheraga H.A., and Manley St., R.J. 1988. Structure of cellulose. 1. Low-energy conformations of single chains. Macromolecules 21:983–990.

    Article  CAS  Google Scholar 

  • Sternberg U., Koch F.-T., Prieß W., and Witter R. 2003. Crystal structure refinements of cellulose polymorphs using solid state 13C chemical shifts. Cellulose 10:189–199.

    Article  CAS  Google Scholar 

  • Stipanovic A.J. and Sarko A. 1976. Packing analysis of carbohydrates and polysaccharides 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9:851–857.

    Article  CAS  Google Scholar 

  • Sugiyama J., Vuong R., and Chanzy H. 1991. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175.

    Article  CAS  Google Scholar 

  • Umemura M., Yuguchi Y., and Hirotsu T. 2004. J Phys Chem A 108:7063–7070.

    Article  CAS  Google Scholar 

  • Wada M., Heux L., Isogai A., Nishiyama Y., Chanzy H., and Sugiyama J. 2001. Improved structural data of cellulose IIII prepared in supercritical ammonia. Macromolecules 34:1237–1243.

    Article  CAS  Google Scholar 

  • Wada M., Heux L., and Sugiyama J. 2004a. Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromolecules 5:1385–1391.

    Article  CAS  Google Scholar 

  • Wada M., Nishiyama Y., Sugiyama J., Chanzy H., and Langan P. 2004b. Cellulose IIII crystal structure and hydrogen bonding by synchrotron x-ray and neutron fiber diffraction. Macromolecules 37:8548–8555.

    Article  CAS  Google Scholar 

  • Whitaker P.M., Nieduszynski I.A., and Atkins E.D.T. 1974. Structural aspects of sodacellulose II. Polymer 15:125–127.

    Article  CAS  Google Scholar 

  • Zugenmaier P. 1983. Structural investigations on cellulose derivatives. J Appl Polym Sci: Appl Polym Symp 37:223–238.

    CAS  Google Scholar 

  • Zugenmaier P. 1985. In Burchard W. (ed.) Polysaccharide. Springer, Berlin, p. 271.

    Google Scholar 

  • Zugenmaier P. 1986. Structural investigations on some cellulose derivatives in the crystalline and liquid crystalline state. In Young R.A. and Rowell R.M. (eds.), Cellulose: Structure, Modification and Hydrolysis. Wiley, New York, pp. 221–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

French, A.D., Johnson, G.P. (2007). Cellulose Shapes. In: Brown, R.M., Saxena, I.M. (eds) Cellulose: Molecular and Structural Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5380-1_15

Download citation

Publish with us

Policies and ethics