Skip to main content

Immunogold Labeling of Cellulose-Synthesizing Terminal Complexes

  • Chapter
Cellulose: Molecular and Structural Biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amor Y., Haigler C.H., Johnson S., Wainscott M., and Delmer D.P. 1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357.

    Article  CAS  Google Scholar 

  • Arioli T., Peng L., Betzner A.S., Burn J., Wittke W., Herth W., Camilleri C., Hofte H., Planzinski J., Birch R., Cork A., Glover J., Redmond J., and Williamson R.E. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720.

    Article  CAS  Google Scholar 

  • Beveridge T.J. 1999. Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733.

    CAS  Google Scholar 

  • Brown, Jr. R.M., 1978. Biogenesis of natural polymer systems with special reference to cellulose assembly and deposition. The Third Philip Morris Science Symposium pp. 52–123.

    Google Scholar 

  • Brown, Jr. R. M. 1996. The biosynthesis of cellulose. J Macromol Sci 10:1345–1373.

    Google Scholar 

  • Brown, Jr. R. M., Willison J.H.M., and Richardson C.L. 1976. Cellulose synthesis in A. xylinum: Visualization of the site of synthesis and direct measurements of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569.

    Article  CAS  Google Scholar 

  • Brown, Jr. R.M., and Montezinos D. 1976. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci USA 73:143–147.

    Article  CAS  Google Scholar 

  • Cui X., Shin H., Song C., Laosinchai W., Amano Y., and Brown, Jr. R.M. 2001. A putative plant homolog of the yeast β-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta 213:223–230.

    Article  CAS  Google Scholar 

  • Delmer D.P. and Amor Y. 1995. Cellulose biosynthesis. Plant Cell 7:987–1000.

    Article  CAS  Google Scholar 

  • Dobberstein B. and Kiermayer O. 1972. Das Auftreten eines bosonderen Typs von Golgivesikeln warend der Sekundarwandbildung von Micrasterias denticulate Breb. Protoplasma 75:185–194.

    Article  Google Scholar 

  • Doblin M.S., Kurek I., Jacob-Wilk D., and Delmer D.P. 2002. Cellulose biosynthesis in plants: From genes to rosettes. Plant Cell Physiol 43:1407–1420.

    Article  CAS  Google Scholar 

  • Emons A.M.C. 1991. Role of particle rosettes and terminal globules in cellulose synthesis. In: Haigler C.H. and Weimer P.J. (eds.), Biosynthesis and Biodegradation of Cellulose. Marcel Dekker, New York, pp. 71–98.

    Google Scholar 

  • Emons A.M.C. 1994. Winding threads around plant cells: a geometrical model for microfibril deposition. Plant Cell Environ 17:3–14.

    Article  Google Scholar 

  • Fujimoto K. 1995. Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. J Cell Sci 108:3443–3449.

    CAS  Google Scholar 

  • Fujimoto K., Umeda M., and Fujimoto T. 1996. Transmembrane phospholipid distribution revealed by freeze-fracture replica labeling. J Cell Sci 109:2453–2460.

    Google Scholar 

  • Giddings T.H., Brower D.L., and Staehelin L.A. 1980. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327–339.

    Article  Google Scholar 

  • Grimson M.J., Haigler C.H., and Blanton R.L. 1996. Cellulose microfibrils, cell motility, and plasma membrane protein organization change in parallel during culmination in Dictyostelium discoideum. J Cell Sci 109:3079–3087.

    CAS  Google Scholar 

  • Herth W. 1984. Oriented “rosette” alignment during cellulose formation in mung bean hypocotyls. Naturwissenschaften 71:216–217.

    Article  Google Scholar 

  • Herth W. 1985a. Plasma-membrane rosettes involved in localized wall thickening during xylem vessel formation of Lepidium sativum L. Planta 164:12–21.

    Article  Google Scholar 

  • Herth W. 1985b. Plant cell wall formation. In: Robards A.W. (ed.), Botanical Microscopy 1985. Oxford University Press, Oxford, pp. 285–310.

    Google Scholar 

  • Herth W. 1987. Effects of 2,6-DCB on plasma membrane rosettes of wheat root cells. Naturwissenschaften 74:556–557.

    Article  CAS  Google Scholar 

  • Herth W. 1989. Inhibitor effects on putative cellulose synthetase complexes of vascular plants. In: Schuerch C. (ed.), Cellulose and Wood-Chemistry and Technology, Wiley, New York, pp. 795–810.

    Google Scholar 

  • Herth W. and Weber, G. 1984. Occurrence of the putative cellulose-synthesizing “rosettes” in the plasma membrane of Glycine max suspension cultured cells. Naturwissenschaften 71:153–154.

    Article  CAS  Google Scholar 

  • Holland N., Holland D., Helentjaris T., Dhugga K.S., Xoconostle-Cazares B., and Delmer, D.P. 2000. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol 123:1313–1324.

    Article  CAS  Google Scholar 

  • Hotchkiss A.T., Jr. and Brown, Jr. R.M. 1987. The association of rosette and globule terminal complexes with cellulose microfibril assembly in Nitella translucens var. axillaris (Charophyceae). J Phycol 23:229–237.

    Article  Google Scholar 

  • Hotchkiss A.T. and Brown, Jr. R.M. 1988. Evolution of the cellulosic cell wall in the Charophyceae. In:Schuerch C (ed.) Cellulose and Wood-Chemistry and Technology, Wiley, NewYork, pp 591–609.

    Google Scholar 

  • Hotchkiss A.T., Jr., Gretz M.R., Hicks, K.B., and Brown, Jr. R.M. 1989. The composition and phylogenetic significance of the Mougeotia (Charophyceae) cell wall. J Phycol 25:646–654.

    Article  CAS  Google Scholar 

  • Itoh T. and Brown, Jr. R.M. 1984. The assembly of cellulose microfibrils in Valonia macrophysa Kutz. Planta 160:372–381.

    Article  Google Scholar 

  • Itoh T. 1990. Cellulose synthesizing complexes in some giant marine algae. J Cell Sci 95:309–319.

    CAS  Google Scholar 

  • Itoh T. and Brown, Jr. R. M. 1988. Development of cellulose synthesizing complexes in Borgesenia and Valonia. Protoplasma 144:160–169.

    Article  CAS  Google Scholar 

  • Joshi C.P., Bhandari S., Ranjan P., Kalluri U.C., Liang X., Fujino T., and Samuga A. 2004. Genomics of cellulose biosynthesis in poplars. New Phytologist 164:53–61.

    Article  CAS  Google Scholar 

  • Kang M.S., Elango N., Mattie E., Au-Young J., Robbins P., and Cabib E. 1984. Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. J Biol Chem 259:14966–14972.

    CAS  Google Scholar 

  • Kimura S., and Itoh T. 1996. New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma 194:151–163.

    Article  CAS  Google Scholar 

  • Kimura S., Chen H. P., Saxena I.M., Brown, Jr. R.M., and Itoh T. 2001. Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinus. J Bacteriol 183:5668–5674.

    Article  CAS  Google Scholar 

  • Kimura S., Laosinchai W., Itoh T., Cui X., Linder C.R., and Brown, Jr. R.M. 1999. Immunogold labeking of rosette terminal cellulose-synthesizing complexes in the vascular plant, Vigna angularis. Plant Cell 11:2075–2085.

    Article  CAS  Google Scholar 

  • Lane D.R., Wiedemeier A., Peng L., Hofte H., Vernhettes S., Desprez T., Hocart C.H., Birch R.J., Baskin T.I., Burn J.E., Arioli T., Betzner A.S., and Williamson R.E. 2001. Temperature sensitive alleles of RSW2 link the KORRIGAN endo-1,4-β-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol 126:278–288.

    Article  CAS  Google Scholar 

  • Lin F.C., Brown, Jr. R.M., Drake R.P., Jr., and Haley B.E. 1990. Identification of the uridine 5′-diphosphoglucose (UDP-glc) binding subunit of cellulose synthase in Acetobacter xylinus using the photoaffinity probe 5-azido-UDP-glc. J Biol Chem 265:4782–4784.

    CAS  Google Scholar 

  • Mayer R., Ross P., Weinhouse H., Amikam D., Volman G., Ohana P., Calhoon R.D., Wong H.G., Emerick A.W., and Bemziman M. 1991. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically cross-reacting proteins in higher plants. Proc Natl Acad Sci USA 88:5472–5476.

    Article  CAS  Google Scholar 

  • Mizuta S., Roberts E., and Brown, Jr. R.M. 1989. A new cellulose synthesizing complex in Vaucheria hamata and its relation to microfibril assembly. In Schuerch, C. (ed.), Cellulose and Wood-Chemistry and Technology. Wiley, New York, pp. 659–676.

    Google Scholar 

  • Mølhøj M., Ulvskov P., and Dal Degan F. 2001. Characterization of the role of membrane-bound endo-beta-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol 43:1399–1406.

    Article  Google Scholar 

  • Mueller S.C. and Brown, Jr. R.M. 1980. Evidence for an intramembranous component associated with a cellulose microfibril synthesizing complex in higher plants. J Cell Biol 84:315–326.

    Article  CAS  Google Scholar 

  • Mueller S.C. and Brown, Jr. R.M. 1982. The control of cellulose microfibril deposition in the cell wall of higher plants. Planta 154:501–515.

    Article  CAS  Google Scholar 

  • Nobles D.R., Romanovicz D.K., and Brown, Jr. R.M. 2001. Cellulose in Cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127:529–542.

    Article  CAS  Google Scholar 

  • Okuda K., Tsekos I., and Brown, Jr. R.M. 1994. Cellulose microfibril assembly in Erythrocladia subintegra Rosenv.: an ideal system for understanding the relationship between synthesizing complexes (TCs) and microfibril crystallization. Protoplasma 180:49–58.

    Article  CAS  Google Scholar 

  • Pear J.R., Kawagoe Y., Schreckengost W.E., Delmer D.P., and Stalker D.M. 1996. Higher plants contain homologs of the bacterial CesA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642.

    Article  CAS  Google Scholar 

  • Peer Y. Van-de, and Wachter R.D. 1997. Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. J Mol Evol 45:619–630.

    Article  Google Scholar 

  • Peng L., Kawagoe Y., Hogan P., and Delmer D. 2002. Sitosterolbeta-glucoside as primer for cellulose synthesis in plants. Science 295:147–150.

    Article  CAS  Google Scholar 

  • Preston R.D. 1964. Structural and mechanical aspects of plant cell walls with particular reference to synthesis and growth. In: Zimmerman M.H. (ed.), Formation of Wood in Forest Trees. Academic Press, New York, pp. 169–188.

    Google Scholar 

  • Richmond T. 2000. Higher plant cellulose synthases. Genome Biology 1(4):reviews 3001.1–3001.6.

    Article  Google Scholar 

  • Read S.M. and Basic T. 2002. Prime time for cellulose. Science 295:59–60.

    Article  CAS  Google Scholar 

  • Robert S., Bichet A., Grandjean O., Kierzkowski D., Satiat-Jeunema B., Pelletier S., Hauser M., Hofte H., and Vernhettesa S. 2005. An Arabidopsis endo-1,4-β-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell 17:3378–3389.

    Article  CAS  Google Scholar 

  • Roelofsen A. 1958. Cell wall structure as related to surface growth. Acta Bot Neerl 7:77–89.

    Google Scholar 

  • Ross P., Mayer R., and Benziman M. 1991. Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58.

    CAS  Google Scholar 

  • Ross P., Weinhouse H., Aloni Y., Michaeli D., Weinberger-Ohana P., Mayer R., Braun S., de Vroom E., van der Marel G.A., van Boom J.H., and Benziman M. 1987. Regulation of cellulose synthesis in Acetobacter xylinus by cyclic diguanylic acid. Nature 325:279–281.

    Article  CAS  Google Scholar 

  • Roudier F., Fernandez A.G., Fujita M., Himmelspach R., Borner G.H., Schindelman G., Song S., Baskin T.I., Dupree P., Wasteneys G.O., and Benfey P.N. 2005. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17:1749–1763.

    Article  CAS  Google Scholar 

  • Rudolph U., Gross H., and Schnepf E. 1989. Investigation of the turnover of the putative cellulose-synthesizing particle ‘rosettes’ within the plasma membrane of Funaria hygrometrica protonema cells. Protoplasma 148:57–69.

    Article  Google Scholar 

  • Salnikov V.V., Grimson M.J., Delmer D.P., and Haigler C.H. 2001. Sucrose synthase localized to cellulose synthesis sites in tracheary elements. Phytochemistry 57:823–833.

    Article  CAS  Google Scholar 

  • Sarma V.R., Silverton E.W., Davies D.R., and Terry W.D. 1971. The three-dimensional structure at 6 A resolution of a human γG1 immunoglobulin molecule. J Biol Chem 216:3753–3759.

    Google Scholar 

  • Sato S., Kato T., Kakegawa K., Ishii T., Liu YG., Awano T., Takabe K., NishiyamaY., Kuga S., Sato S., Nakamura Y., Tabata S., and Shibata D. 2001. Role of the putative membrane-bound endo-1,4-β-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol 42:251–263.

    Article  CAS  Google Scholar 

  • Saunders G.W. 1997. Phylogenetic affinities of the Sarcinochrysidales and Chrysomeridales (Heterokonta) based on analyses of molecular and combined data. J Phycol 33:310–318.

    Article  CAS  Google Scholar 

  • Saxena I.M., Kudlicka K., Okuda K., and Brown, Jr. R.M. 1994. Characterization of genes in the cellulose synthesizing operon (acs operon) of Acetobacter xylinus: Implications for cellulose crystallization. J Bacteriology 176:5735–5752.

    CAS  Google Scholar 

  • Saxena I.M., Brown, Jr. R.M., Fevre M., Geremia R., and Henrissat B. 1995. Multi-domain architecture of glycosyl transferases: Imprications for mechanism of actin. J Bacteriol 177:1419–1424.

    CAS  Google Scholar 

  • Szyjanowicz P.M., McKinnon I., Taylor N.G., Gardiner J., Jarvis M.C., and Turner S.R. 2004. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J 37:730–740.

    Article  CAS  Google Scholar 

  • Tanaka K., Murata K., Yamazaki M., Onosato K., Miyao A., and Hirochika H. 2003. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73–83.

    Article  CAS  Google Scholar 

  • Taylor N.G., Scheible W.R., Culter S., Somerville C.R., and Turner S.R. 1999. The irregular xylem 3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–780.

    Article  CAS  Google Scholar 

  • Taylor N.G., Howells R.M., Huttly A.K., Vickers K., and Turner S.R. 2003. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100: 1450–1455.

    Article  CAS  Google Scholar 

  • Tsekos I. 1999. The sites of cellulose synthesis in algae:diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655.

    Article  CAS  Google Scholar 

  • Tsekos I. and Reiss H.-D. 1992. Occurrence of the putative microfibril-synthesizing complexes (linear terminal complexes) in the plasma membrane of the epiphytic marine alga Erythrocladia subintegra Rosenv. Protoplasma 169:57–67.

    Article  Google Scholar 

  • Zogaj X., Nimtzv M., Rohde M., Bokranz W., and Romling U. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463.

    Article  CAS  Google Scholar 

  • Zonglie H., Delauney A.J., and Verma D.P.S. 2001a. A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell 13:755–768.

    Google Scholar 

  • Zonglie H., Zhang Z., Olson J.M., and Verma D.P.S. 2001b. A novel UDP-glucose trasferase is part of the callose synthase complex and interacts with phragmoprastin at the forming cell plate. Plant Cell 13:769–779.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Itoh, T., Kimura, S., Brown, R.M. (2007). Immunogold Labeling of Cellulose-Synthesizing Terminal Complexes. In: Brown, R.M., Saxena, I.M. (eds) Cellulose: Molecular and Structural Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5380-1_14

Download citation

Publish with us

Policies and ethics