Skip to main content

Cellulose-Synthesizing Complexes of a Dinoflagellate and other Unique Algae

  • Chapter
Cellulose: Molecular and Structural Biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey J.C., Bidigare R.R., Christensen S.J., and Andersen R.A. 1998. Phaeothamniophyceae classis nova: a new lineage of chromophytes based upon photosynthetic pigments, rbcL sequence analysis and ultrastructure. Protist 149:245–263.

    Article  Google Scholar 

  • Bricheux G., Mahoney D.G., and Gibbs S.P. 1992. Development of the pellicle and thecal plates following ecdysis in the dinoflagellate Glenodinium foliaceum. Protoplasma 168:159–171.

    Article  Google Scholar 

  • Brown, Jr. R.M. 1985. Cellulose microfibril assembly and orientation: recent developments. J Cell Sci (Suppl.) 2:13–32.

    Google Scholar 

  • Brown, Jr. R.M. 1990. Algae as tools in studying the biosynthesis of cellulose, nature’s most abundant macromolecule. In: Wiessner W., Robinson D.G. and Starr R.C. (eds.) Experimental Phycology, vol. 1, Cell walls and surfaces, reproduction, photosynthesis. Springer, Berlin, pp. 20–39.

    Google Scholar 

  • Brown, Jr. R.M. 1996. The biosynthesis of cellulose. J Macromol Sci- Pure Appl Chem A33:1345–1373.

    Article  CAS  Google Scholar 

  • Brown, Jr. R.M., and Montezinos D. 1976. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci USA 73:143–147.

    Article  CAS  Google Scholar 

  • Brown, Jr. R.M., Haigler C.H., Suttie J., White A.R., Roberts E., Smith C., Itoh T., and Cooper K. 1983. The biosynthesis and degradation of cellulose. J Appl Poly Sci Appl Poly Symp 37:33–78.

    CAS  Google Scholar 

  • Cavalier-Smith T. 1993. Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994.

    CAS  Google Scholar 

  • Clayton M.N. 1989. Brown algae and chromophyte phylogeny. In: Green J.C., Leadbeater B.S.C. and Diver W.L. (eds.) The Chromophyte Algae: Problems and Perspectives—Systematics Association Special, vol. 38. Clarendon Press, Oxford, pp. 229–253.

    Google Scholar 

  • Cronshaw J., Myers A., and Preston R.D. 1958. A chemical and physical investigation of the cell walls of some marine algae. Biochim Biophys Acta 27:89–103.

    Article  CAS  Google Scholar 

  • De Winder B., Stal L.J., and Mur L.R. 1990. Crinalium epipsammum sp. now: a filamentous cyanobacterium with trichomes composed of elliptical cells and containing poly-β-(1,4)-glucan (cellulose). J General Microbiol 136:1645–1653.

    CAS  Google Scholar 

  • Dodge J.D. 1971. Fine structure of the Pyrrophyta. Bot Rev 37:481–508.

    Article  Google Scholar 

  • Dodge J.D. and Crawford R.M. 1970. A survey of thecal fine structure in the Dinophyceae. Bot J Linn Soc 63:53–67.

    Article  Google Scholar 

  • Emons, A.M.C. 1991. Role of particle rosettes and terminal globules in cellulose sythesis. In: Haigler C.H. and Weimer P.J. (eds.) Biosynthesis and Biodegradation of Cellulose. Marcel Dekker, New York, pp. 71–98.

    Google Scholar 

  • Giddings T.H. Jr., Brower D.L., and Staehelin L.A. 1980. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327–339.

    Article  Google Scholar 

  • Grimson M.J., Haigler C.H., and Blanton R.L. 1996. Cellulose microfibrils, cell motility, and plasma membrane protein organization change in parallel during culmination in Dictyostelium discoideum. J Cell Sci 109:3079–3087.

    CAS  Google Scholar 

  • Höhfeld I. and Melkonian M. 1992. Amphiesmal ultrastructure of dinoflagellates: a reevaluation of pellicle formation. J Phycol 28:82–89.

    Article  Google Scholar 

  • Itoh T. 1990. Cellulose synthesizing complexes in some giant marine algae. J Cell Sci 95:309–319.

    CAS  Google Scholar 

  • Katsaros C., Reiss H.-D., and Schnepf E. 1996. Freeze-fracture studies in brown algae: putative cellulose-synthesizing complexes on the plasma membrane. Eur J Phycol 31:41–48.

    Google Scholar 

  • Kawachi M., Inouye I., Honda D., O’Kelly C.J., Bailey J.C., Bidigare R.R., and Andersen R.A. 2002. The Pinguiophyceae classis nova, a new class of photosynthetic stramenopiles whose members produce large amounts of omega-3 fatty acids. Phycol Res 50:31–47.

    Article  CAS  Google Scholar 

  • Kimura S. and Itoh T. 1996. New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma 194:151–163.

    Article  CAS  Google Scholar 

  • Kimura S., Laosinchai W., Itoh T., Cui X., Linder C.R., and Brown, Jr. R.M. 1999. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2085.

    Article  CAS  Google Scholar 

  • Kowallik K.V. 1993. Origin and evolution of plastids from chlorophyll a + c containing algae, suggested ancestral relationships to red and green algal plastids. In: Lesin R.A. (ed.) Origins of plastids—symbiogenesis, prochlorophytes and the origins of chloroplasts. Chapman and Hall, New York, pp. 223–263.

    Google Scholar 

  • Kuga S. and Brown, Jr. R.M. 1989. Correlation between structure and the biogenic mechanisms of cellulose: new insights based on recent electron microscopic findings. In: Schuerch C. (ed.) Cellulose and wood-chemistry and technology. Wiley, New York, pp. 677–688.

    Google Scholar 

  • Loeblich A.R. III. 1970. The amphiesma or dinoflagellate cell covering. In: Yochelson E.L. (ed.) Proceedings of the North American Paleontology Convention Chicago, Illinois. Allen Press, Lawrence, KS, pp. 867–929.

    Google Scholar 

  • McFadden G.I. 2001. Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959.

    Article  Google Scholar 

  • McFadden G.I., Gilson P.R., and Hill D.R.A. 1994. Goniomonas: rRNA sequences indicate that this phagotrophic flagellate is a close relative of the host component. Eur J Phycol 29:29–32.

    Article  Google Scholar 

  • McFadden G.I., Gilson P.R., and Waller R. 1995. Molecular phylogeny of chlorarachniophytes based on plastid rRNA and rbcL sequences. Arch Protistenkd 145:231–239.

    Google Scholar 

  • Mizuta S. and Brown, Jr. R.M. 1992a. High resolution analysis of the formation of cellulose synthesizing complexes in Vaucheria hamata. Protoplasma 166:187–199.

    Article  CAS  Google Scholar 

  • Mizuta S. and Brown, Jr. R.M. 1992b. Effects of 2,6-dichlorobenzonitrile and Tinopal LPW on the structure of the cellulose synthesizing complexes of Vaucheria hamata. Protoplasma 166:200–207.

    Article  CAS  Google Scholar 

  • Mizuta S., Roberts E.M., and Brown, Jr. R.M. 1989. A new cellulose synthesizing complex in Vaucheria hamata and its relation to microfibril assembly. In: Schuerch C. (ed.) Cellulose and Wood-Chemistry and Technology. Wiley, New York, pp. 656–676.

    Google Scholar 

  • Morrill L.C. 1984. Ecdysis and the location of the plasma membrane in the dinoflagellate Heterocapsa niei. Protoplasma 119:8–20.

    Article  Google Scholar 

  • Morrill L.C. and Loeblich A.R. III. 1981. The dinoflagellate pellicular wall layer and its occurrence in the division Pyrrhophyta. J Phycol 17:315–323.

    Article  Google Scholar 

  • Morrill LC. and Loeblich, A.R. III. 1983. Ultrastructure of the dinoflagellate amphiesma. Int Rev Cytol 82:151–180.

    Article  CAS  Google Scholar 

  • Mueller S.C. and Brown, Jr. R.M. 1980. Evidence for an intramembrane component associated with a cellulose microfibril synthesizing complex in higher plants. J Cell Biol 84:315–326.

    Article  CAS  Google Scholar 

  • Netzel H. and Dürr G. 1984. Dinoflagellate cell cortex. In: Spector D. (ed.) Dinoflagellates. Academic Press, Orlando, FL, pp. 43–105.

    Google Scholar 

  • Nevo Z. and Sharon N. 1969. The cell wall of Peridinium westii, a noncellulosic glucan. Biochim Biophys Acta 173:161–175.

    Article  CAS  Google Scholar 

  • Okuda K. 2002. Structure and phylogeny of cell coverings. J Plant Res 115:283–288.

    Article  CAS  Google Scholar 

  • Okuda K., Sekida S., Yoshinaga S., and Suetomo Y. 2004. Cellulose-synthesizing complexes in some chromophyte algae. Cellulose 11:365–376.

    Article  CAS  Google Scholar 

  • Okuda K., Tsekos I., and Brown, Jr. R.M. 1994. Cellulose microfibril assembly in Erythrocladia subintegra Rosenv.: an ideal system for understanding the relationship between synthesizing complexes (TCs) and microfibril crystallization. Protoplasma 180:49–58.

    Article  CAS  Google Scholar 

  • Peng H.B. and Jaffe L.F. 1976. Cell wall formation in Pelvetia embryos: a freeze-fracture study. Planta 133:57–61.

    Article  Google Scholar 

  • Parker C.W., Preston R.D., and Fogg E.G. 1963. Studies of the structure and chemical composition of the cell walls of Vaucheria and Saprolegniaceae. Proc Roy Soc B 158:435–445.

    Article  CAS  Google Scholar 

  • Quader H. 1991. Role of linear terminal complexes in cellulose synthesis. In: Haigler C.H. and Weimer P.J. (eds.) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp. 51–69.

    Google Scholar 

  • Reiss H.-D., Katsaros C., and Galatis B. 1996. Freeze-fracture studies in the brown alga Asteronema rhodochortonoides. Protoplasma 193:46–57.

    Article  Google Scholar 

  • Richmond P.A. 1991. Occurrence and function of native cellulose. In: Haigler C.H. and Weimer P.J. (eds.) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp. 5–23.

    Google Scholar 

  • Schüßler A., Hirn S., and Katsaros C. 2003. Cellulose synthesizing terminal complexes and morphogenesis in tip-growing cells of Syringoderma phinneyi (Phaeophyceae). Phycol Res 51:35–44.

    Article  Google Scholar 

  • Sekida S., Horiguchi T., and Okuda K. 1999. Direct evidence for cellulose microfibrils present in thecal plates of the dinoflagellate Scrippsiella hexapraecingula. Hikobia 13:65–69.

    Google Scholar 

  • Sekida S., Horiguchi T., and Okuda K. 2001a. Development of the cell covering in the dinoflagellate Scrippsiella hexapraecingula (Peridiniales, Dinophyceae). Phycol Res 49:163–176.

    Article  Google Scholar 

  • Sekida S., Shibagaki R., and Okuda K. 2001b. A putative cellulose-synthesizing terminal complex in Botrydium stoloniferum (Xanthophyceae). Hikobia 13:457–462.

    Google Scholar 

  • Sekida S., Horiguchi T., and Okuda K. 2004. Development of thecal plates and pellicle in the dinoflagellate Scrippsiella hexapraecingula (Peridiniales, Dinophyceae) elucidated by changes in stainability of the associated membranes. Eur J Phycol 39:105–114.

    Article  Google Scholar 

  • Swift E. and Remsen C.C. 1970. The cell wall of Pyrocystis spp. (Dinococcales). J Phycol 6:79–86.

    Google Scholar 

  • Tamura H., Mine I., and Okuda K. 1996. Cellulose-synthesizing terminal complexes and microfibril structure in the brown alga Sphacelaria rigidula (Sphacelariales, Phaeophyceae). Phycol Res 44:63–68.

    Article  CAS  Google Scholar 

  • Taylor F.J.R. 1987. Dinoflagellate morphology. In: Taylor F.J.R. (ed.) The biology of dinoflagellates. Blackwell Scientific, Oxford, pp. 24–91.

    Google Scholar 

  • Tsekos I. 1999. The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655.

    Article  CAS  Google Scholar 

  • Tsekos I. and Reiss H.-D. 1992. Occurrence of the putative microfibril-synthesizing complexes (linear terminal complexes) in the plasma membrane of the epiphytic marine red alga Erythrocladia subintegra Rosenv. Protoplasma 169:57–67.

    Article  Google Scholar 

  • Tsekos I., Okuda K., and Brown, Jr. R.M. 1996. The formation and development of cellulose-synthesizing linear terminal complexes (TCs) in the plasma membrane of the marine red alga Erythrocladia subintegra Rosenv. Protoplasma 193:33–45.

    Article  CAS  Google Scholar 

  • Wetherbee R. 1975. The fine structure of Ceratium tripos, a marine armored dinoflagellate. III. Thecal plate formation. J Ultrastr Res 50:77–87.

    Article  CAS  Google Scholar 

  • Willison J.H.M. and Brown, Jr. R.M. 1978. Cell wall structure and deposition in Glaucocystis. J Cell Biol 77:103–119.

    Article  CAS  Google Scholar 

  • Yoon H.S., Hackett J.D., and Bhattacharya D. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99:11724–11729.

    Article  CAS  Google Scholar 

  • Zaar K. 1979. Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80:773–777.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Okuda, K., Sekida, S. (2007). Cellulose-Synthesizing Complexes of a Dinoflagellate and other Unique Algae. In: Brown, R.M., Saxena, I.M. (eds) Cellulose: Molecular and Structural Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5380-1_12

Download citation

Publish with us

Policies and ethics