Advertisement

Many Paths up the Mountain: Tracking the Evolution of Cellulose Biosynthesis

  • David R. NoblesJr.
  • R. Malcolm BrownJr.

Keywords

Bacterial Cellulose Cellulose Microfibril Lateral Gene Transfer Dictyostelium Discoideum Cellulose Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloni Y., Delmer D.P., and Benziman M. 1982. Achievement of high rates of in vitro synthesis of 1,4-beta-D-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc Natl Acad Sci USA 79(21):6448–6452.CrossRefGoogle Scholar
  2. Amikam D. and Benziman M. 1989. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 171(12):6649–6655.Google Scholar
  3. Amikam D. and Galperin M.Y. 2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6.CrossRefGoogle Scholar
  4. Archibald J.M., Rogers M.B., Toop M., Ishida K., and Keeling P. 2003. Lateral gene transfer and the evolution of plastid targeted proteins in the secondary plastid-containing alga Bigelowiella natans. PNAS 100(13):7678–7683.CrossRefGoogle Scholar
  5. Ausmees N., Mayer R., Weinhouse H., Volman G., Amikam D., Benziman M., and Lindberg M. 2001. Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol Lett 204:163–167.CrossRefGoogle Scholar
  6. Benziman M., Haigler C.H., Brown, Jr. R.M., White A.R., and Cooper K.M. 1980. Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. PNAS USA 77:6678–6682.CrossRefGoogle Scholar
  7. Blanton R.L., Fuller D., Iranfar N., Grimson M.J., and Loomis W.F. 2000. The cellulose synthase gene of Dictyostelium. Proc Natl Acad Sci USA 97:2391–2396.CrossRefGoogle Scholar
  8. Brahamsha B. and Haselkorn R. 1992. Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120: cloning, expression, and inactivation of the sigB and sigC genes. J Bacteriol 173(8):2442–50.Google Scholar
  9. Brett C.T. 2000. Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–99.CrossRefGoogle Scholar
  10. Brown, Jr. R.M. 1985. Cellulose microfibril assembly and orientation: recent developments. J Cell Sci Suppl 2:13–32.Google Scholar
  11. Brown, Jr. R.M., Franke W.W., Kleinig H., Falk H., and Sitte P. 1969. A cellulosic wall component produced by the golgi apparatus. Science 166:894–896.CrossRefGoogle Scholar
  12. Brown, Jr. R.M. 1996. The biosynthesis of cellulose. Pure Appl Chem 10:1345–1373.Google Scholar
  13. Brown, Jr. R.M. and Montezinos D. 1976. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci USA 73:143–147.CrossRefGoogle Scholar
  14. Brown, Jr. R.M., Willison J.H.M., and Richardson C.L. 1976. Cellulose biosynthesis in Acetobacter xylinum: 1. Visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73(12):4565–4569.CrossRefGoogle Scholar
  15. Dehal P., Satou Y., Campbell R.K., Chapman J., Degnan B., De Tomaso A., Davidson B., Di Gregorio A., Gelpke M., Goodstein D.M., Harafuji N., Hastings K.E., Ho I., Hotta K., Huang W., Kawashima T., Lemaire P., Martinez D., Meinertzhagen I.A., Necula S., Nonaka M., Putnam N., Rash S., Saiga H., Satake M., Terry A., Yamada L., Wang H.G., Awazu S., Azumi K., Boore J., Branno M., Chin-Bow S., DeSantis R., Doyle S., Francino P., Keys D.N., Haga S., Hayashi H., Hino K., Imai K.S., Inaba K., Kano S., Kobayashi K., Kobayashi M., Lee B.I., Makabe K.W., Manohar C., Matassi G., Medina M., Mochizuki Y., Mount S., Morishita T., Miura S., Nakayama A., Nishizaka S., Nomoto H., Ohta F., Oishi K., Rigoutsos I., Sano M., Sasaki A., Sasakura Y., Shoguchi E., Shin-i T., Spagnuolo A., Stainier D., Suzuki M.M., Tassy O., Takatori N., Tokuoka M., Yagi K., Yoshizaki F., Wada S., Zhang C., Hyatt P.D., Larimer F., Detter C., Doggett N., Glavina T., Hawkins T., Richardson P., Lucas S., Kohara Y., Levine M., Satoh N., and Rokhsar D.S. 2003. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167.CrossRefGoogle Scholar
  16. Deinema M.H. and Zevenhuizen L.P. 1971. Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Mikrobiol 78(1):42–51.CrossRefGoogle Scholar
  17. Delmer D.P. 1999. Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Phys Plant Mol Biol 50:245–276.CrossRefGoogle Scholar
  18. Doolittle W. 1998. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311.CrossRefGoogle Scholar
  19. García B., Latasa C., Solano C., García-del Portillo F., Gamazo C., and Lasa I. 2004. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 54(1):264–277.CrossRefGoogle Scholar
  20. Giddings J.R. TH, Brower D.L., and Staehelin L.A. 1980. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84 (2):327–339.CrossRefGoogle Scholar
  21. González V., Bustos P., Ramirez-Romero M.A., Medrano-Soto A., Salgado H., Hernandez-Gonzalez I., Hernandez-Celis J.C., Quintero V., Moreno-Hagelsieb G., Girard L., Rodriguez O., Flores M., Cevallos M.A., Collado-Vides J., Romero D., and Davila G. 2003. The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 4(6):R36.CrossRefGoogle Scholar
  22. Grimson M.J., Haigler C.H., and Blanton RL. 1996. Cellulose microfibrils, cell motility, and plasma membrane protein organization change in parallel during culmination in Dictyostelium discoideum. J Cell Sci 109 (Pt 13):3079–3087.Google Scholar
  23. Guerrero G., Peralta H., Aguilar A., Diaz R., Villalobos M.A., Medrano-Soto A. and Mora J. 2005. Evolutionary, structural and functional relationships revealed by comparative analysis of syntenic genes in Rhizobiales. BMC Evol Biol 5:55.CrossRefGoogle Scholar
  24. Hotchkiss A.T. and Brown, Jr. R.M., 1988. Evolution of the cellulosic cell wall in the Charophyceae. In: Schuerch C. (ed.) Cellulose and Wood – Chemistry and Technology.. Wiley, New York, pp. 591–609.Google Scholar
  25. Huang C.Y., Ayliffe M.A., and Timmis J.N. 2003. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76.CrossRefGoogle Scholar
  26. Kimura S., Chen H.P., Saxena I.M., Brown, Jr. R.M., and Itoh T. 2001a. Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. J Bacteriol 183(19):5668–74.CrossRefGoogle Scholar
  27. Kimura S., Ohshima C., Hirose E., Nishikawa J., and Itoh T. 2001b. Cellulose in the house of the appendicularian Oikopleura rufescens. Protoplasma 216(1–2):71–74.CrossRefGoogle Scholar
  28. Korbel J.O., Jensen L.J., von Mering C., and Bork P. 2004. Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nat Biotechnol 22(7):911–917.CrossRefGoogle Scholar
  29. Linder M., Winiecka-Krusnell J., and Linder E. 2002. Use of recombinant cellulose-binding domains of Trichoderma reesei cellulase as a selective immunocytochemical marker for cellulose in protozoa. Appl Environ Microbiol.Google Scholar
  30. Marchler-Bauer A., Anderson J.B., Cherukuri P.F., DeWeese-Scott C., Geer L.Y., Gwadz M., He S., Hurwitz D.I., Jackson J.D., Ke Z., Lanczycki C.J., Liebert C.A., Liu C., Lu F., Marchler G.H., Mullokandov M., Shoemaker B.A., Simonyan V., Song J.S., Thiessen P.A., Yamashita R.A., Yin J.J., Zhang D., and Bryant S.H. 2005. CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192–D196.CrossRefGoogle Scholar
  31. Martin W., Rujan T., Richly E., Hansen A., Cornelsen S., Lins T., Leister D., Stoebe B., Hasegawa M., and Penny D. 2002. Evolutionary anaylsis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. PNAS 99(19):12246–12251.CrossRefGoogle Scholar
  32. Matthysse A.G., Deschet K., Williams M., Marry M., White A.R., and Smith W.C. 2004. A functional cellulose synthase from ascidian epidermis. Proc Natl Acad Sci USA 101(4):986–991.CrossRefGoogle Scholar
  33. Matthysse A.G., Marry M., Krall L., Kaye M., Ramey B.E., Fuqua C., and White A.R. 2005. The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant Microbe Interact 18(9):1002–1010.CrossRefGoogle Scholar
  34. Matthysse A.G., Thomas D.L., and White A.R. 1995a. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177(4):1076–1081.Google Scholar
  35. Matthysse A.G., White S., and Lightfoot R. 1995b. Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177(4):1069–1075.Google Scholar
  36. Mayer R., Ross P., Weinhouse H., Amikam D., Volman G., Ohana P., Calhoon R.D., Wong H.C., Emerick A.W., and Benziman M. 1991. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. Proc Natl Acad Sci USA 88(12):5472–5476.CrossRefGoogle Scholar
  37. Mueller S.C. and Brown, Jr. R.M. 1980. Evidence for an intramembrane componentassociated with a cellulose microfibril synthesizing complex in higher plants. J Cell Biol 84:315–326.CrossRefGoogle Scholar
  38. Mühlethaler K. 1949. The structure of bacterial cellulose. Biochim Biophys Acta 3:527–535.CrossRefGoogle Scholar
  39. Nakashima K., Yamanda L., Satou Y., Azuma J., and Satoh N. 2004. The evolutionary origin of animal cellulose synthase. Dev Genes Evol 214(2):81–88.CrossRefGoogle Scholar
  40. Napoli C., Dazzo F., and Hubbell D. 1975. Production of cellulose microfibrils by Rhizobium. Appl Microbiol 30(1):123–31.Google Scholar
  41. Nobles D.R., Jr. and Brown, Jr. R.M., Jr. 2004. The pivotal role of cyanobacteria in the evolution of cellulose synthases and cellulose synthase-like proteins. Cellulose 11:437–448.CrossRefGoogle Scholar
  42. Nobles D.R., Romanovicz D.K., and Brown, Jr. R.M., Jr. 2001. Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127(2):529–542.CrossRefGoogle Scholar
  43. Okuda K.O., Sekida S., Yoshinaga S. and Suetomo Y. 2004. Cellulose synthesizing complexes in some chromophyte algae. Cellulose 11:365–376.CrossRefGoogle Scholar
  44. Olsen G.J., Woese C.R., and Overbeek R. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6.Google Scholar
  45. Preston R.D. 1974. Cellulose. In: The Physical Biology of Plant Cell Walls. Chapman & Hall, London, pp. 444–456.Google Scholar
  46. Richmond T. 2000. Higher plant cellulose synthases. Genome Biology 1(4): reviews 3001.1–3001.6.CrossRefGoogle Scholar
  47. Roberts A.W. and Roberts E.M. 2004. Cellulose synthase (CesA) genes in algae and seedless plants. Cellulose 11:419–435.CrossRefGoogle Scholar
  48. Roberts E. 1991. Biosynthesis of cellulose II and related carbohydrates. PhD thesis. The Univeristy of Texas at Austin, Austin.Google Scholar
  49. Roelofsen P.A. 1958. Cell wall structure as related to surface growth. Acta Botanica Neerlandica 7:77–89.Google Scholar
  50. Römling U. (2002). Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212.CrossRefGoogle Scholar
  51. Ross P., Aloni Y., Weinhouse H., Michaeli D., Weinberger-Ohana P., Mayer R., and Benziman M. 1986. Control of cellulose synthesis in Acetobacter xylinum: a unique guanyl ologonucleotide is the immediate activator of the cellulose synthase. Carbohydrate Res 149:101–117.CrossRefGoogle Scholar
  52. Ross P., Mayer R., and Benziman M. 1991. Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58.Google Scholar
  53. Saxena I.M. and Brown, Jr. R.M., 2005. Cellulose biosynthesis: current views and evolving concepts. Ann Bot (Lond) 96(1):9–21.CrossRefGoogle Scholar
  54. Saxena I.M., Brown, Jr. R.M., and Dandekar T. 2001. Structure-function characterization of cellulose synthase: relationship to other glycosyltransferases. Phytochemistry 57:1135–1148.CrossRefGoogle Scholar
  55. Saxena I.M., Brown, Jr. R.M., Fevre M., Geremia R., and Henrissat B. 1995. Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J Bacteriol 177:1419–24.Google Scholar
  56. Saxena I.M., Kudlicka K., Okuda K., and Brown, Jr. R.M. 1994. Characterization of genes in the cellulose synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176:5735–5752.Google Scholar
  57. Schüßler A., Hirn S. and Katsaros C. 2003. Cellulose synthesizing terminal complexes and morphogenesis in tip-growing of Syringoderma phinneyi (Phaeophyceae). Phycol Res 51:35–44.CrossRefGoogle Scholar
  58. Silver R.P., Prior K., Nsahlai C., and Wright L.F. 2001. ABC transporters and the export of capsular polysaccharides from gram-negative bacteria. Res Microbiol 152(3–4):357–364.CrossRefGoogle Scholar
  59. Spiers J., Kahn G., Bohannon J., Travisano M. and Rainey P.B. 2002. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161:33–46.Google Scholar
  60. Stragier P. and Losick R. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30:297–341.CrossRefGoogle Scholar
  61. Streit W.R., Schmitz R.A., Perret X., Staehelin C., Deakin W.J., Raasch C., Liesegang H., and Broughton W.J. 2004. An evolutionary hot spot: the pNGR234b replicon of Rhizobium sp. strain NGR234. J Bacteriol 186(2):535–542.CrossRefGoogle Scholar
  62. Tsekos I. 1999. The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:625–655.CrossRefGoogle Scholar
  63. Yamada M. and Miyazaki T. 1976. Ultrastructure and chemical analysis of the cell wall of Pythium debaryanum. Jpn J Microbiol 20(2):83–91.Google Scholar
  64. Yu Z.G., Zhou L.Q., Anh V.V., Chu K.H., Long S.C., and Deng J.Q. 2005. Phylogeny of prokaryotes and chloroplasts revealed by a simple composition approach on all protein sequences from complete genomes without sequence alignment. J Mol Evol 60(4):538–545.CrossRefGoogle Scholar
  65. Yudkin M.D. and Clarkson J. 2005. Differential gene expression in genetically identical sister cells: the initiation of sporulation in Bacillus subtilis. Mol Microbiol 56(3):578–589.CrossRefGoogle Scholar
  66. Zaar K. 1979. Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum.J Cell Biol 80(3):773–777.CrossRefGoogle Scholar
  67. Zogaj X., Bokranz W., Nimtz M., and Romling U. 2003. Production of cellulose and curli fimbrieae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71(7):4151–4158.CrossRefGoogle Scholar
  68. Zogaj X., Nimtz M., Rohde M., Bokranz W., and Romling U. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • David R. NoblesJr.
    • 1
  • R. Malcolm BrownJr.
    • 2
  1. 1.Section of Molecular Genetics and MicrobiologyThe University of TexasAustinUSA
  2. 2.Section of Molecular Genetics and MicrobiologyThe University of TexasAustinUSA

Personalised recommendations