Double choreographical solutions for n-body type problems

  • V. Barutello
  • S. Terracini
Conference paper


In this work, we prove the existence of solutions for the double choreographical n-body problem as critical points which are not minimizers of the corresponding Lagrangian action functional. We use the topological features of the sublevels of the action when a strong force assumption is imposed. We conclude with a description of an operative method to determine these solutions in ℝ3.


Critical ponts theory n-body problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arioli, G., Barutello, V., Terracini, S.: A new branch of choreographic solutions for the n-body problem. Comm. Math. Phys. (2006) to appearGoogle Scholar
  2. Bahri, A., Rabinowitz, P.H.: A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal. 82, 412–428 (1989)CrossRefMathSciNetMATHGoogle Scholar
  3. Barutello, V.: On the n-body problem. Tesi di Dottorato, Università di Milano-Bicocca (2004)Google Scholar
  4. Barutello, V., Terracini, S.: Action minimizing orbits in the n-body problem with choreography constraint. Nonlinearity 17, 2015–2039 (2004a)CrossRefADSMathSciNetMATHGoogle Scholar
  5. Barutello, V., Terracini, S.: A bisection algorithm for the numerical Mountain Pass. NoDEA (2004b) to appearGoogle Scholar
  6. Chen K.-C.: Action-minimizing orbits in the parallelogram four-body problem with equal masses. Arch. Ration. Mech. Anal. 158, 293–318 (2001)CrossRefMathSciNetMATHGoogle Scholar
  7. Chenciner, A., Gerver, J., Montgomery, R., Simó C.: Simple choreographies of N bodies: a preliminary study. Geometry, Mechanics and Dynamics, Springer, Berlin (2001)Google Scholar
  8. Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three body problem in the case of equal masses. Ann. of Math. 152(3), 881–901 (1999)CrossRefMathSciNetGoogle Scholar
  9. Chenciner A., Venturelli A.: Minima de l’intégrale d’action du problème Newtonien de 4 corps de masses égales dans ℝ3: orbites “hip-hop”. Celest. Mech. Dynam. Astron. 77, 139–152 (1999)CrossRefADSMathSciNetGoogle Scholar
  10. Ferrario, D., Terracini, S.: On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math. 155(2), 305–362 (2004)CrossRefMathSciNetMATHADSGoogle Scholar
  11. Gordon, W.: Conservative dynamical systems involving strong forces. Trans. Amer. Math. Soc. 204, 113–135 (1975)CrossRefMathSciNetMATHGoogle Scholar
  12. Marchal C.: The family P 12 of the three-body problem—the simplest family of periodic orbits, with twelve symmetries per period. Celest. Mech. Dynam. Astron. 78, 279–298 (2000)CrossRefADSMathSciNetMATHGoogle Scholar
  13. Majer, P., Terracini, S.: Periodic solutions to some problems of n-body type. Arch. Ration. Mech. Anal. 124, 381–404 (1993)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • V. Barutello
    • 1
  • S. Terracini
    • 1
  1. 1.Dipartimento di Matematica e ApplicazioniUniversità di Milano-BicoccaMilanItaly

Personalised recommendations