Advertisement

Simulated performance of dedicated Ge-strip Compton telescopes as γ-lens focal plane instrumentation

  • C. B. WundererEmail author
  • P. von Ballmoos
  • N. Barrière
  • S. E. Boggs
  • G. Weidenspointner
  • A. Zoglauer
Chapter

Abstract

With focusing of gamma rays in the nuclear-line energy regime starting to establish itself as a feasible and very promising approach for high-sensitivity γ-ray (line) studies of individual sources, optimizing the focal plane instrumentation for γ-ray lens telescopes is a prime concern. Germanium detectors offer the best energy resolution available at ∼2 keV FWHM at 1MeV and thus constitute the detector of choice for a spectroscopy mission in the MeV energy range. Using a Compton detector focal plane has three advantages over monolithic detectors: additional knowledge about (Compton) events enhances background rejection capabilities, the inherently finely pixellated detector naturally allows the selection of events according to the focal spot size and position, and Compton detectors are inherently sensitive to γ-ray polarization. We use the extensive simulation and analysis package assembled for the ACT vision mission study to explore achievable sensitivities for different Ge Compton focal plane configurations as a first step towards determining an optimum configuration.

Keywords

X- and gamma-ray telescopes and instrumentation Observation and data reduction techniques: computer modeling and simulation Compton scattering Nucleosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrière, N., et al.: MAX, a Laue Diffraction Lens for Nuclear Astrophysics, DOI:10.1007/s10686-006-9058-x, (2006)Google Scholar
  2. Boggs, S.E., et al.: Advanced Compton Telescope vision mission study Report (2005)Google Scholar
  3. Boggs, S.E., et al.: Performance of the Nuclear Compton Telescope, DOI:10.1007/s10686-006-9051-4, (2006)Google Scholar
  4. CERN: Geant — detector description and simulation tool. CERN Application Software Group; Computing and Networks Division version 3.21 (1993)Google Scholar
  5. Compton, A.H.: Phys. Rev. 21(5) (1923)Google Scholar
  6. Ferreira, S.E.S., Potgieter, M.S.: J. Geophys. Res. 107, 12–1 (2002)CrossRefGoogle Scholar
  7. Gruber, D.E., et al.: Astrophys. J. 520, 124 (1999)CrossRefADSGoogle Scholar
  8. Kanbach, G., et al.: New Astronomy Review 48, 275–280 (2004)CrossRefADSGoogle Scholar
  9. Kippen, R.M.: New Astronomy Review 48, 221–225 (2004)CrossRefADSGoogle Scholar
  10. McConnell, M., et al.: Astrophys. J. (2006) in prep.Google Scholar
  11. Mizuno, T., et al.: Astrophys. J. 614, 1113–1123 (2004)CrossRefADSGoogle Scholar
  12. Moskalenko, I.V., et al.: Astrophys. J. 565, 280 (2002)CrossRefADSGoogle Scholar
  13. Weidenspointner, G., et al.: Monte Carlo Study of Detector Concepts for the MAX Laue Lens Gamma-Ray Telescope, DOI:10.1007/s10686-006-9035-4, (2006)Google Scholar
  14. Weidenspointner G., et al.: Astrophys. J., Suppl. Ser. 156, 69 (2005)CrossRefADSGoogle Scholar
  15. Wunderer, C.B., et al.: The ACT Vision Mission Study Simulation Effort. In: Proc. Astronomy with Radioactivities V. Elsevier (2006, in press)Google Scholar
  16. Zoglauer, A.: First Light for the Next Generation of Compton and Pair Telescopes. PhD thesis, Technical University Munich (2005)Google Scholar
  17. Zoglauer, A., et al.: MEGAlib — the Medium Energy Gamma-Ray Astronomy Software Library. In: Proc. Astronomy with Radioactivities V. Elsevier (2006, in press)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • C. B. Wunderer
    • 1
    Email author
  • P. von Ballmoos
    • 2
  • N. Barrière
    • 2
  • S. E. Boggs
    • 1
  • G. Weidenspointner
    • 2
  • A. Zoglauer
    • 1
  1. 1.Space Sciences LaboratoryUC BerkeleyUSA
  2. 2.Centre d’Etude Spatiale des RayonnementsToulouseFrance

Personalised recommendations