Prospects and requirements for measurements of extragalactic γ-ray lines

  • Richard E. Griffiths


A brief summary is presented of requirements for the measurements of extragalactic γ-ray lines. The electron-positron annihilation line at 511 keV represents the best prospect, and although this line is greatly broadened in active galactic nuclei, a narrow line should be present in clusters of galaxies and radio lobes as a result of prior AGN activity. The strongest fluxes should be of the order of 10−4 photons cm−2 s−1 from the closest extended sources.


Extragalactic Gamma-rays AGN Clusters of galaxies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, Z., Romero, G. E., Durouchoux, P.: Proc. Fourth Integral Workshop “Exploring the Gamma-Ray Universe”, ESA-SP 459, p.131Google Scholar
  2. 2.
    Barris, B.J., Tonry, J.L.: Astrophys. J. 637, 427 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Bender, R. et al.: Astrophys. J. 631, 280 (2005)CrossRefADSGoogle Scholar
  4. 4.
    Bottcher, M., Schlickeiser, R: Astron. Astrophys. Supp. Ser. 120, 575Google Scholar
  5. 5.
    Cappellaro, E., Turatto, M.: The influence of binaries on stellar population studies, (Dordrecht: Kluwer Academic Publishers). Astrophys. Space Sci. Library 264, 199 (2001)Google Scholar
  6. 6.
    Comastri, A.: DOI: 10.1007/s10686-006-9041-6 (2006)Google Scholar
  7. 7.
    Ebisawa, K., Bourban, G., Bodaghee, A., Mowlavi, N., Courvoisier, T. J.-L.: Astron. Astrophys. 411, L59; see also vizieR On-line Data Catalog J/A+A/411/L59 (2004)Google Scholar
  8. 8.
    Furlanetto, S.R., Loeb, A.: Astrophys. J. 572, 796 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Fukuzawa and the Suzaku HXD Team, 2006, in pressGoogle Scholar
  10. 10.
    Begelman, M., Blandford, R. Rees, M.J.: Rev. Mod. Phys. 56, 255 (1984)CrossRefADSGoogle Scholar
  11. 11.
    Hoeflich, P., Wheeler, J.C., Khokhlov, A.: Astrophys. J. 492, 228; ibid. 2004, 605, 573 (1998)Google Scholar
  12. 12.
    INTEGRAL Special Issue: Astron. Astrophys. 411, L1–L460 (2003)Google Scholar
  13. 13.
    Kawaharada, M., et al.: Proc. Soc. Photo-Optical Eng. 5501, 286 (2004)ADSGoogle Scholar
  14. 14.
    Knoedlseder, J., et al.: Astron. Astrophys. 441, 513 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Leising, M.: DOI: 10.1007/s10686-006-9052-3 (2006)Google Scholar
  16. 16.
    Maciolek-Niedzwiecki, A., Zdziarski, A. Coppi, P.: MNRAS 276, 273.Google Scholar
  17. 17.
    Mannucci, F., Della Valle, M., Panagia, N., Cappellaro, E., Cresci, G., Maiolino, R., Petrosian, A., Turatto, M.: Astron. Astrophys. 433, 807Google Scholar
  18. 18.
    Marcowith, A., Henri, G., Pelletier, G.: MNRAS 277, 681Google Scholar
  19. 19.
    Perola, G.C., Matt, G., Cappi, M., Fiore, F., Guainazzi, M., Maraschi, L., Petrucci, P.O., Piro, L.: Astron. Astrophys. 389, 802 (2002)CrossRefADSGoogle Scholar
  20. 20.
    Roland, J., Hermsen, W.: Astron. Astrophys. 297, L9Google Scholar
  21. 21.
    Scannapieco, E., Bildsten, L.: Astrophys. J. 629, L85Google Scholar
  22. 22.
    Takahashi, T., et al.: DOI: 10.1007/s10686-006-9059-9 (2006)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Richard E. Griffiths
    • 1
  1. 1.Carnegie Mellon UniversityUSA

Personalised recommendations