Advertisement

MAX, a Laue diffraction lens for nuclear astrophysics

  • N. BarrièreEmail author
  • P. von Ballmoos
  • H. Halloin
  • N. Abrosimov
  • J. M. Alvarez
  • K. Andersen
  • P. Bastie
  • S. Boggs
  • P. Courtois
  • T. Courvoisier
  • M. Harris
  • M. Hernanz
  • J. Isern
  • P. Jean
  • J. Knödlseder
  • G. Skinner
  • B. Smither
  • P. Ubertini
  • G. Vedrenne
  • G. Weidenspointner
  • C. Wunderer
Chapter

Abstract

The next generation of instrumentation for nuclear astrophysics will have to achieve a factor of 10–100 improvement in sensitivity over present technologies. With the focusing gamma-ray telescope MAX we take up this challenge: combining unprecedented sensitivity with high spectral and angular resolution, and the capability of measuring the polarization of the incident photons. The feasibility of such a crystal diffraction gamma-ray lens has recently been demonstrated with the prototype lens CLAIRE. MAX is a proposed mission which will make use of satellite formation flight to achieve 86m focal length, with the Laue lens being carried by one satellite and the detector by the other. In the current design, the Laue diffraction lens of MAX will consist of 13740 copper and germanium (Ge1−x Six, x ∼ 0.02) crystal tiles arranged on 36 concentric rings. It simultaneously focuses in two energy bands, each centred on one of the main scientific objectives of the mission: the 800–900 keV band is dedicated to the study of nuclear gamma-ray lines from type Ia supernovae (e.g. 56Co decay line at 847 keV) while the 450–530 keV band focuses on electron-positron annihilation (511 keV emission) from the Galactic centre region with the aim of resolving potential point sources. MAX promises a breakthrough in the study of point sources at gamma-ray energies by combining high narrow-line sensitivity (better than 10−6 cm−2 s−1) and high energy resolution (E/dE ∼ 500). The mission has successfully undergone a pre-phase A study with the French Space Agency CNES, and continues to evolve: new diffracting materials such as bent or composite crystals seem very promising.

Keywords

Instrumentation: Gamma-ray Laue lens Gamma-ray astrophysics Mosaic crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrosimov, N. et al.: J. Crystal Growth 275, e495–e500 (2005)CrossRefADSGoogle Scholar
  2. 2.
    Abrosimov, N.: Exp. Astron. 20, DOI 10.1007/s10686-006-9036-3 (2006)Google Scholar
  3. 3.
    Authier, A.: Dynamical theory of X-ray diffraction. Oxford Science Publications (2001)Google Scholar
  4. 4.
    Boggs, S.E. et al.: Exp. Astron. 20, DOI 10.1007/s10686-006-9051-4 (2006)Google Scholar
  5. 5.
    Bastie, P. et al.: ESRF User report, http://ftp.esrf.fr/pub/UserReports/32513_A.pdf (2006)Google Scholar
  6. 6.
    Halloin, H., Bastie, P. et al.: Exp. Astron. 20, DOI 10.1007/s10686-006-9064-z (2006)Google Scholar
  7. 7.
    Caroli, E. et al.: Exp. Astron. 20, DOI 10.1007/s10686-006-9048-z (2006)Google Scholar
  8. 8.
    Courtois, P. et al.: Exp. Astron. 20, DOI 10.1007/s10686-005-9018-x (2006)Google Scholar
  9. 9.
    Cosmic Vision, ESA, BR-247Google Scholar
  10. 10.
    Duchon, P. et al.: Exp. Astron. 20, DOI 10.1007/s10686-006-9070-1 (2006)Google Scholar
  11. 11.
    Halloin, H.: Phd Thesis, University Toulouse III, (2003) http://www.cesr.fr/~pvb/MAX/publis/Diss_Halloin_03.pdfGoogle Scholar
  12. 12.
    Hernanz, M. et al.: Exp. Astron. 20, DOI 10.1007/s10686-006-9036-3 (2006)Google Scholar
  13. 13.
    Hinglais, E. et al.: Exp. Astron. 20, DOI 10.1007/s10686-005-9020-3 (2006)Google Scholar
  14. 14.
    Jean, P. et al.: A&A 445, 579–589 (2006)CrossRefADSGoogle Scholar
  15. 15.
    Knödlseder, J. et al.: Exp. Astron. 20, DOI 10.1007/s10686-006-9031-8 (2006)Google Scholar
  16. 16.
    Leising, M.: Exp. Astron. 20, DOI 10.1007/s10686-006-9052-3 (2006)Google Scholar
  17. 17.
    Limousin, O. et al.: NIM A 504, 24–37 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Lund, N.: Exp Astron 2, 259 (1992)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Prantzos, N.: In Proc 5th INTEGRAL Science Workshop (ESA SP-552), 15 (2005)Google Scholar
  20. 20.
    Smither, R. et al.: RSI 76, 123107 (2005)Google Scholar
  21. 21.
    Smither, R. et al.: Exp. Astron. 20, DOI 10.1007/s10686-005-9019-9 (2006)Google Scholar
  22. 22.
    Takahashi, T.: Exp. Astron. 20, DOI 10.1007/s10686-006-9059-9 (2006)Google Scholar
  23. 23.
    von Ballmoos, P. et al.: Exp. Astron. 20, DOI 10.1007/s10686-006-9071-0 (2006)Google Scholar
  24. 24.
    Weidenspointner, G. et al.: Exp. Astron. 20, DOI 10.1007/s10686-006-9035-4 (2006)Google Scholar
  25. 25.
    Wunderer, C. et al.: Exp. Astron. 20, DOI 10.1007/s10686-006-9034-5 (2006)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • N. Barrière
    • 1
    Email author
  • P. von Ballmoos
    • 1
  • H. Halloin
    • 4
  • N. Abrosimov
    • 3
  • J. M. Alvarez
    • 7
  • K. Andersen
    • 2
  • P. Bastie
    • 2
  • S. Boggs
    • 5
  • P. Courtois
    • 2
  • T. Courvoisier
    • 6
  • M. Harris
    • 1
  • M. Hernanz
    • 7
  • J. Isern
    • 7
  • P. Jean
    • 1
  • J. Knödlseder
    • 1
  • G. Skinner
    • 1
  • B. Smither
    • 8
  • P. Ubertini
    • 9
  • G. Vedrenne
    • 1
  • G. Weidenspointner
    • 1
  • C. Wunderer
    • 5
  1. 1.Centre d’Etude Spatiale des RayonnementsToulouse Cedex 4France
  2. 2.Institut Laue LangevinGrenoble Cedex 9France
  3. 3.Institut für KristallzüchtungBerlinGermany
  4. 4.APC, collège de FranceParisFrance
  5. 5.Space Sciences Laboratory #7450University of CaliforniaBerkeleyUSA
  6. 6.ISDCVersoixSwitzerland
  7. 7.IEEC-CSICBellaterra (Barcelona)Spain
  8. 8.Argonne National LaboratoryArgonneUSA
  9. 9.Istituto di Astrofisica Spaziale e Fisica CosmicaRomaItaly

Personalised recommendations