Prospects in space-based gamma-ray astronomy

Chapter

Abstract

Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime.

With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

Keywords

Gamma-ray astronomy astronomy Cosmic accelerators Cosmic explosions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassani, L., et al.: ApJ 636, 65 (2006)CrossRefADSGoogle Scholar
  2. Churazov, E., Sunyaev, R., Sazonov, S., et al.: MNRAS 357, 1377 (2005)CrossRefADSGoogle Scholar
  3. Comastri: in: R. Maiolino and R. Mujica (eds.), Proceedings of ‘Multiwavelength AGN surveys’ (Cozumel, December 8–12 2003), (astro-ph/0406031) (2004)Google Scholar
  4. De Chiara, P., et al.: Proc. of SPIE/ESO Astronomical Telescopes and Instrumentation ICM, 27–31 March 2000 (2000)Google Scholar
  5. Gomez-Gomar, J., et al.: MNRAS 295, 1 (1998)CrossRefADSGoogle Scholar
  6. Halloin, H., von Ballmoos, P., Evrard, J., et al.: SPIE 5168, 471 (2004)CrossRefADSGoogle Scholar
  7. Hillebrandt, W., Niemeyer, J.C.: ARAA 38, 191 (2000)CrossRefADSGoogle Scholar
  8. Knödlseder, J., Jean, P., Lonjou, V., et al.: A&A 441, 513 (2005)CrossRefADSGoogle Scholar
  9. Kuiper, L., Hermsen, W., Mendez, M.: ApJ 613, 1173 (2004)CrossRefADSGoogle Scholar
  10. Lebrun, F., et al.: Nature 428, 293 (2004)CrossRefADSGoogle Scholar
  11. Livio, M., Riess, A.G.: ApJ 594, L93 (2003)CrossRefADSGoogle Scholar
  12. Mannucci, F., Della Valle, M., Panagia, N., et al.: A&A 433, 807 (2005)CrossRefADSGoogle Scholar
  13. McConnell, M.L., Bennett, K., Bloemen, H., et al.: in: M. L. McConnell & J.M. Ryan (eds.), Proc. 5th Compton Symposium, AIP 510, 114 (2000)Google Scholar
  14. Molkov, S., Hurley, K., Sunyaev, R., et al.: A&A 433, L13 (2005)CrossRefADSGoogle Scholar
  15. Perola, G.C., et al.: A&A 389, 802 (2002)CrossRefADSGoogle Scholar
  16. Riess, A.G., Filippenko, A.V., Challis, P., et al.: AJ 116, 1009 (1998)CrossRefADSGoogle Scholar
  17. Risaliti, G.: A&A 386, 379 (2002)CrossRefADSGoogle Scholar
  18. Von Ballmoos, P., Halloin, H., Paul, J., et al.: Proc. 5th INTEGRAL Workshop, Munich 16–20 February 2004, ESA SP-552, 747 (2004)Google Scholar
  19. Worsley, M.A., et al.: MNRAS 357, 1281 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Centre d’Etude Spatiale des RayonnementsToulouse Cedex 4France

Personalised recommendations