Advertisement

MICROSTRUCTURAL EVOLUTION OF IRRADIATED CERAMICS

  • Chiken Kinoshita
Part of the NATO Science Series book series (NAII, volume 235)

Abstract

The interaction of charged particles such as electrons and ions, with matter is based on both Coulomb interactions and elastic collisions. At high initial particle velocities, a large amount of energy is spent in the excitation of electrons bound to lattice atoms in non-metals. As the particle slows down, the energy communicated to such electrons becomes less important and before it comes to rest, elastic collisions with lattice atoms are dominant.

Keywords

Microstructural Evolution Dislocation Loop Irradiation Temperature Electron Irradiation Yttria Stabilize Zirconia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    G. H. Kinchin and R. S. Pease, Reports on Progress in Physics, 18 (1955), 1.CrossRefADSGoogle Scholar
  2. [2]
    C. H. de Novion and J. Morillo, J. Atomic Energy Soc. of Japan, 30 (1988), 585.Google Scholar
  3. [3]
    S. J. Zinkle and C. Kinoshita, J. Nucl. Mater., 251 (1997), 200.CrossRefGoogle Scholar
  4. [4]
    F. Seits and J. S. Koehler, Solid State in Physics, 2 (1956), 305.Google Scholar
  5. [5]
    G. P. Pells, J. Nucl. Mater., 155–157 (1988), 67.CrossRefGoogle Scholar
  6. [6]
    L. M. Howe and M. H. Rainville, Nucl. Instr. Meth. Phys. Res., B19/20 (1987), 61.CrossRefGoogle Scholar
  7. [7]
    S. J. Zinkle and V. A. Skuratov, Nucl. Instr. Meth. In Phys. Res., B141 (1998), 737.CrossRefADSGoogle Scholar
  8. [8]
    E. Sonder and W. A. Sibley, In: J. H. Crawford Jr and L. M. Slifkin (eds.) Point Defects in Solids (1972), (Plenum Press, New York-London.)Google Scholar
  9. [9]
    F. W. Clinard Jr. and L. W. Hobbs, In: R. A. Johnson and A. N. Orlov (eds.) Physics of Radiation Effects in Crystals (1986), Elsevier Science Publishers BV.Google Scholar
  10. [10]
    T. Brudevoll, E. A. Kotomin and N. E. Chritensen, Phys. Rev., B53 (1996), 7731.ADSGoogle Scholar
  11. [11]
    C. Kinoshita, T. Sonoda and A. Manabe, Phil. Mag., A78 (1998), 657.ADSGoogle Scholar
  12. [12]
    K. E. Sickafus, A. C. Larson, N. Yu, M. Nastasi, G. W. Hollenberg, F. A. Garner and R. C. Bradt, J. Nucl. Mater., 219 (1995), 128.CrossRefGoogle Scholar
  13. [13]
    T. Soeda, S. Matsumura, J. Hayata and C. Kinoshita, J. Electron Microsc., 48 (1999), 531.Google Scholar
  14. [14]
    H. M. Naguib and R. Kelly, Rad. Effects, 25 (1975), 1.CrossRefGoogle Scholar
  15. [15]
    W. J. Weber, R. C. Ewing, C. R. A. Catlow, T. D. de la Rubia, L. W. Hobbs, C. Kinoshita, Hj Matzke, A. T. Motta, M. Nastasi, E. K. H. Salje, E. R. Evance and S. J. Zinkle, J. Mater. Res., 13 (1998), 1434.ADSCrossRefGoogle Scholar
  16. [16]
    C. Kinoshita, J. Electron Microsc., 40 (1991), 301.MathSciNetGoogle Scholar
  17. [17]
    C. Kinoshita, J. Nucl. Mater., 191–194 (1992), 67.CrossRefGoogle Scholar
  18. [18]
    K. Fukuya, M. Terasawa and K. Ozawa, J. Atomic Energy Soc. Jpn., 30 (1988), 657.Google Scholar
  19. [19]
    L.W. Hobbs, F. W. Clinard Jr., S. J. Zinkle and R. C. Ewing, J. Nucl. Mater., 216 (1994), 291.CrossRefGoogle Scholar
  20. [20]
    C. Kinoshita, K. Hayashi and S. Kitajima, Nucl. Instr. Meth. in Phys. Res., B1 (1984), 209.CrossRefADSGoogle Scholar
  21. [21]
    C. Kinoshita, K. Hayashi and T. E. Mitchell, Adv. Ceram., 12 (1984), 490.Google Scholar
  22. [22]
    C. Kinoshita and K. Nakai, Jpn. J. Appl. Phys., Series 2 (1989), 105.Google Scholar
  23. [23]
    M. Kiritani and H. Takata, J. Nucl. Mat., 69&70 (1978), 277.CrossRefGoogle Scholar
  24. [24]
    K. Nakai, C. Kinoshita, Y. Muroo and S. Kitajima, Phil. Mag., A48 (1983), 215.Google Scholar
  25. [25]
    K. Nakai, C. Kinoshita and S. Kitajima, Phil. Mag., A52 (1985), 115.Google Scholar
  26. [26]
    C. Kinoshita, T. Mukai and S. Kitajima, In: J. Takamura, M. Doyama and M. Kiritani (eds.) Point Defects and Defects Interactions in Metals (1982), University of Tokyo Press, Tokyo, p. 887.Google Scholar
  27. [27]
    F. W. Clinard, Jr., G. F. Hurley and L. W. Hobbs, J. Nucl.Mater., 108–109 (1982), 655.CrossRefGoogle Scholar
  28. [28]
    C. A. Parker, L.W. Hobbs, K. C. Russell and F. W. Clinard, Jr., J. Nucl. Mater., 133–134 (1985), 741.CrossRefGoogle Scholar
  29. [29]
    F. A. Garner, G. W. Hollenberg, F. D. Hobbs, J. L. Ryan, Z. Li, C. A. Black and R.C. Bradt, J. Nucl. Mater., 212–215 (1994), 1087.CrossRefGoogle Scholar
  30. [30]
    C. A. Black, F. A. Garner and R. C. Bradt, J. Nucl. Mater., 212–215 (1994) 1096.CrossRefGoogle Scholar
  31. [31]
    R. A. Youngman, T. E. Mitchell, F. W. Clinard, Jr. and G. F. Hurley, J. Mater. Res., 6 (1991), 2178.ADSCrossRefGoogle Scholar
  32. [32]
    C. Kinoshita, K. Fukumoto, K. Fukuda, F. A. Garner and G. W. Hollenberg, J. Nucl. Mater., 219 (1995), 143.CrossRefGoogle Scholar
  33. [33]
    L. W. Hobbs and F. W. Clinard Jr., J. Phys., 41 (1980), C6–232.Google Scholar
  34. [34]
    S. J. Zinkle, Nucl. Instr. and Meth., B 91 (1994), 234.ADSGoogle Scholar
  35. [35]
    K. Nakai, K. Fukumoto and C. Kinoshita, J. Nucl. Mater., 191–194 (1992), 63.Google Scholar
  36. [36]
    K. Fukumoto, C. Kinoshita and F. A. Garner, J. Nucl. Sci. and Technol., 32 (1995), 773.CrossRefGoogle Scholar
  37. [37]
    P. Veyssiere, J. Rabier and J. Grilhe, Phys. Stat. Sol. (a), 31 (1975), 605.CrossRefGoogle Scholar
  38. [38]
    P. Veyssiere, J. Rabier, H. Garem and J. Grilhe, Philos. Mag., 38 (1978), 61.CrossRefGoogle Scholar
  39. [39]
    R. S. Wilks, J. A. Desport and R. Bradley, Proc. Brit. Ceram. Soc., 7 (1967), 403.Google Scholar
  40. [40]
    R. S. Wilks, J. Nucl. Mater., 26 (1968), 137.CrossRefGoogle Scholar
  41. [41]
    D. J. Barbat and N. J. Tighe, J. Am. Ceram. Soc., 51 (1968), 611.CrossRefGoogle Scholar
  42. [42]
    W. E. Lee, M. L. Jenkins and G. P. Pells, Philos. Mag., A 51 (1985), 639.Google Scholar
  43. [43]
    A. H. Cottrel and B. A. Bilby, Proc. Phys. Soc., 62 (1949), 49.ADSGoogle Scholar
  44. [44]
    A. I. Ryazanov, K. Yasuda, C. Kinoshita and A. V. Klaptsov, J. Nucl. Mater., 307 (2002), 918.CrossRefGoogle Scholar
  45. [45]
    K. Yasuda, C. Kinoshita, S. Matsumura and A. I. Ryazanov, J. Nucl. Mater. 319 (2003), 74.CrossRefGoogle Scholar
  46. [46]
    A. I. Ryazanov, K. Yasuda, C. Kinoshita and A. V. Klaptsov, J. Nucl. Mater., 323 (2003), 372.CrossRefADSGoogle Scholar
  47. [47]
    C. Kinoshita, J. Nucl. Mater., 179–181 (1991), 53.CrossRefGoogle Scholar
  48. [48]
    A. M. Glass and T. M. Searle, J. Chem. Phys., 46 (1967), 2092.CrossRefGoogle Scholar
  49. [49]
    F. Freund and H. Wengeler, J. Chem. Solids, 43 (1982), 129.CrossRefGoogle Scholar
  50. [50]
    L. W. Hobbs, In: J. A. Venable (eds.) Development in Electron Microscopy and Analysis (1976), Academic Press, New York, p. 287.Google Scholar
  51. [51]
    R. A. Youngman, L.W. Hobbs and T. E. Mitchell, J. Phys., Paris, 41 (1980), C6–227.Google Scholar
  52. [52]
    C. Kinoshita, K. Yasuda, S. Matsumua and M. Shimada, Metall. and Mater. Trans., 35A (2004) 2257.CrossRefGoogle Scholar
  53. [53]
    S. J. Zinkle, Nucl. Instr. Meth. Phys. Res., B91 (1992), 67.Google Scholar
  54. [54]
    S. J. Zinkle, Rad. Effects Defects Solids, 148 (1999), 447.CrossRefGoogle Scholar
  55. [55]
    C. Kinoshita H. Abe, S. Maeda and K. Fukumoto, J. Nucl. Mater., 219 (1995), 152.CrossRefGoogle Scholar
  56. [56]
    K. Yasuda, C. Kinoshita, R. Morisaki and H. Abe, Phil. Mag., A78 (1998), 583.ADSGoogle Scholar
  57. [57]
    K. Yasuda, C. Kinoshita, M. Ohmura and H. Abe, Nucl. Instr. and Meth. Phys. Res., B166–167 (2000), 107.CrossRefGoogle Scholar
  58. [58]
    K. Yasuda and C. Kinoshita, Nucl. Instr. and Meth. Phys. Res., B191 (2002), 559.CrossRefADSGoogle Scholar
  59. [59]
    C. Kinoshita, K. Fukumoto, K. Fukuda, F.A. Garner and G.W. Hollenberg, J. Nucl. Mater., 219 (1995), 143.CrossRefGoogle Scholar
  60. [60]
    C. Kinoshita and S.J. Zinkle, J. Nucl. Mater., 233–237 (1996), 129.Google Scholar
  61. [61]
    K.E. Sickafus, N. Yu and M. Nastasi, Nucl. Instr. and Meth. in Phys. Res., B116 (1996), 85.CrossRefADSGoogle Scholar
  62. [62]
    K. Yasuda, C. Kinoshita, K. Fukuda and F.A. Garner, J. Nucl. Mater., 283–287 (2000), 937.CrossRefGoogle Scholar
  63. [63]
    K. Yasuda, T. Higuchi, K. Shimada, C. Kinoshita, K. Tanaka and M. Kutsuwada, Philos. Mag. Lett., 83 (2003), 21.CrossRefADSGoogle Scholar
  64. [64]
    T. Higuchi, K. Yasuda, K. Tanaka, K. Shiiyama and C. Kinoshita, Nucl. Instr. and Meth. in Phys. Res., B206 (2003), 103.CrossRefADSGoogle Scholar
  65. [65]
    http://www.ansys.com/Google Scholar
  66. [66]
    G.P. Pells and Stahopoulos, Rad. Effects, 74 (1983), 181.CrossRefGoogle Scholar
  67. [67]
    W.E. Lee, M.L. Jenkins and G.P. Pells, Philos. Mag., A51 (1985), 639.Google Scholar
  68. [68]
    K. Yasuda, C. Kinoshita, M. Kutsuwada and T. Hirai, J. Nucl. Mater., 233–237 (1996), 1051.CrossRefGoogle Scholar
  69. [69]
    W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics 2nd Edition, 1975.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Chiken Kinoshita
    • 1
  1. 1.Kyushu UniversityFukuokaJAPAN

Personalised recommendations