Skip to main content

MICROSTRUCTURAL EVOLUTION OF IRRADIATED CERAMICS

  • Conference paper

Part of the book series: NATO Science Series ((NAII,volume 235))

Abstract

The interaction of charged particles such as electrons and ions, with matter is based on both Coulomb interactions and elastic collisions. At high initial particle velocities, a large amount of energy is spent in the excitation of electrons bound to lattice atoms in non-metals. As the particle slows down, the energy communicated to such electrons becomes less important and before it comes to rest, elastic collisions with lattice atoms are dominant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. G. H. Kinchin and R. S. Pease, Reports on Progress in Physics, 18 (1955), 1.

    Article  ADS  Google Scholar 

  2. C. H. de Novion and J. Morillo, J. Atomic Energy Soc. of Japan, 30 (1988), 585.

    Google Scholar 

  3. S. J. Zinkle and C. Kinoshita, J. Nucl. Mater., 251 (1997), 200.

    Article  CAS  Google Scholar 

  4. F. Seits and J. S. Koehler, Solid State in Physics, 2 (1956), 305.

    Google Scholar 

  5. G. P. Pells, J. Nucl. Mater., 155–157 (1988), 67.

    Article  Google Scholar 

  6. L. M. Howe and M. H. Rainville, Nucl. Instr. Meth. Phys. Res., B19/20 (1987), 61.

    Article  Google Scholar 

  7. S. J. Zinkle and V. A. Skuratov, Nucl. Instr. Meth. In Phys. Res., B141 (1998), 737.

    Article  ADS  Google Scholar 

  8. E. Sonder and W. A. Sibley, In: J. H. Crawford Jr and L. M. Slifkin (eds.) Point Defects in Solids (1972), (Plenum Press, New York-London.)

    Google Scholar 

  9. F. W. Clinard Jr. and L. W. Hobbs, In: R. A. Johnson and A. N. Orlov (eds.) Physics of Radiation Effects in Crystals (1986), Elsevier Science Publishers BV.

    Google Scholar 

  10. T. Brudevoll, E. A. Kotomin and N. E. Chritensen, Phys. Rev., B53 (1996), 7731.

    ADS  Google Scholar 

  11. C. Kinoshita, T. Sonoda and A. Manabe, Phil. Mag., A78 (1998), 657.

    ADS  Google Scholar 

  12. K. E. Sickafus, A. C. Larson, N. Yu, M. Nastasi, G. W. Hollenberg, F. A. Garner and R. C. Bradt, J. Nucl. Mater., 219 (1995), 128.

    Article  CAS  Google Scholar 

  13. T. Soeda, S. Matsumura, J. Hayata and C. Kinoshita, J. Electron Microsc., 48 (1999), 531.

    CAS  Google Scholar 

  14. H. M. Naguib and R. Kelly, Rad. Effects, 25 (1975), 1.

    Article  CAS  Google Scholar 

  15. W. J. Weber, R. C. Ewing, C. R. A. Catlow, T. D. de la Rubia, L. W. Hobbs, C. Kinoshita, Hj Matzke, A. T. Motta, M. Nastasi, E. K. H. Salje, E. R. Evance and S. J. Zinkle, J. Mater. Res., 13 (1998), 1434.

    Article  ADS  CAS  Google Scholar 

  16. C. Kinoshita, J. Electron Microsc., 40 (1991), 301.

    CAS  MathSciNet  Google Scholar 

  17. C. Kinoshita, J. Nucl. Mater., 191–194 (1992), 67.

    Article  Google Scholar 

  18. K. Fukuya, M. Terasawa and K. Ozawa, J. Atomic Energy Soc. Jpn., 30 (1988), 657.

    CAS  Google Scholar 

  19. L.W. Hobbs, F. W. Clinard Jr., S. J. Zinkle and R. C. Ewing, J. Nucl. Mater., 216 (1994), 291.

    Article  CAS  Google Scholar 

  20. C. Kinoshita, K. Hayashi and S. Kitajima, Nucl. Instr. Meth. in Phys. Res., B1 (1984), 209.

    Article  ADS  Google Scholar 

  21. C. Kinoshita, K. Hayashi and T. E. Mitchell, Adv. Ceram., 12 (1984), 490.

    Google Scholar 

  22. C. Kinoshita and K. Nakai, Jpn. J. Appl. Phys., Series 2 (1989), 105.

    Google Scholar 

  23. M. Kiritani and H. Takata, J. Nucl. Mat., 69&70 (1978), 277.

    Article  Google Scholar 

  24. K. Nakai, C. Kinoshita, Y. Muroo and S. Kitajima, Phil. Mag., A48 (1983), 215.

    Google Scholar 

  25. K. Nakai, C. Kinoshita and S. Kitajima, Phil. Mag., A52 (1985), 115.

    Google Scholar 

  26. C. Kinoshita, T. Mukai and S. Kitajima, In: J. Takamura, M. Doyama and M. Kiritani (eds.) Point Defects and Defects Interactions in Metals (1982), University of Tokyo Press, Tokyo, p. 887.

    Google Scholar 

  27. F. W. Clinard, Jr., G. F. Hurley and L. W. Hobbs, J. Nucl.Mater., 108–109 (1982), 655.

    Article  Google Scholar 

  28. C. A. Parker, L.W. Hobbs, K. C. Russell and F. W. Clinard, Jr., J. Nucl. Mater., 133–134 (1985), 741.

    Article  Google Scholar 

  29. F. A. Garner, G. W. Hollenberg, F. D. Hobbs, J. L. Ryan, Z. Li, C. A. Black and R.C. Bradt, J. Nucl. Mater., 212–215 (1994), 1087.

    Article  Google Scholar 

  30. C. A. Black, F. A. Garner and R. C. Bradt, J. Nucl. Mater., 212–215 (1994) 1096.

    Article  Google Scholar 

  31. R. A. Youngman, T. E. Mitchell, F. W. Clinard, Jr. and G. F. Hurley, J. Mater. Res., 6 (1991), 2178.

    Article  ADS  CAS  Google Scholar 

  32. C. Kinoshita, K. Fukumoto, K. Fukuda, F. A. Garner and G. W. Hollenberg, J. Nucl. Mater., 219 (1995), 143.

    Article  CAS  Google Scholar 

  33. L. W. Hobbs and F. W. Clinard Jr., J. Phys., 41 (1980), C6–232.

    Google Scholar 

  34. S. J. Zinkle, Nucl. Instr. and Meth., B 91 (1994), 234.

    ADS  Google Scholar 

  35. K. Nakai, K. Fukumoto and C. Kinoshita, J. Nucl. Mater., 191–194 (1992), 63.

    Google Scholar 

  36. K. Fukumoto, C. Kinoshita and F. A. Garner, J. Nucl. Sci. and Technol., 32 (1995), 773.

    Article  CAS  Google Scholar 

  37. P. Veyssiere, J. Rabier and J. Grilhe, Phys. Stat. Sol. (a), 31 (1975), 605.

    Article  CAS  Google Scholar 

  38. P. Veyssiere, J. Rabier, H. Garem and J. Grilhe, Philos. Mag., 38 (1978), 61.

    Article  CAS  Google Scholar 

  39. R. S. Wilks, J. A. Desport and R. Bradley, Proc. Brit. Ceram. Soc., 7 (1967), 403.

    Google Scholar 

  40. R. S. Wilks, J. Nucl. Mater., 26 (1968), 137.

    Article  CAS  Google Scholar 

  41. D. J. Barbat and N. J. Tighe, J. Am. Ceram. Soc., 51 (1968), 611.

    Article  Google Scholar 

  42. W. E. Lee, M. L. Jenkins and G. P. Pells, Philos. Mag., A 51 (1985), 639.

    Google Scholar 

  43. A. H. Cottrel and B. A. Bilby, Proc. Phys. Soc., 62 (1949), 49.

    ADS  Google Scholar 

  44. A. I. Ryazanov, K. Yasuda, C. Kinoshita and A. V. Klaptsov, J. Nucl. Mater., 307 (2002), 918.

    Article  Google Scholar 

  45. K. Yasuda, C. Kinoshita, S. Matsumura and A. I. Ryazanov, J. Nucl. Mater. 319 (2003), 74.

    Article  CAS  Google Scholar 

  46. A. I. Ryazanov, K. Yasuda, C. Kinoshita and A. V. Klaptsov, J. Nucl. Mater., 323 (2003), 372.

    Article  ADS  CAS  Google Scholar 

  47. C. Kinoshita, J. Nucl. Mater., 179–181 (1991), 53.

    Article  Google Scholar 

  48. A. M. Glass and T. M. Searle, J. Chem. Phys., 46 (1967), 2092.

    Article  CAS  Google Scholar 

  49. F. Freund and H. Wengeler, J. Chem. Solids, 43 (1982), 129.

    Article  CAS  Google Scholar 

  50. L. W. Hobbs, In: J. A. Venable (eds.) Development in Electron Microscopy and Analysis (1976), Academic Press, New York, p. 287.

    Google Scholar 

  51. R. A. Youngman, L.W. Hobbs and T. E. Mitchell, J. Phys., Paris, 41 (1980), C6–227.

    Google Scholar 

  52. C. Kinoshita, K. Yasuda, S. Matsumua and M. Shimada, Metall. and Mater. Trans., 35A (2004) 2257.

    Article  CAS  Google Scholar 

  53. S. J. Zinkle, Nucl. Instr. Meth. Phys. Res., B91 (1992), 67.

    Google Scholar 

  54. S. J. Zinkle, Rad. Effects Defects Solids, 148 (1999), 447.

    Article  CAS  Google Scholar 

  55. C. Kinoshita H. Abe, S. Maeda and K. Fukumoto, J. Nucl. Mater., 219 (1995), 152.

    Article  CAS  Google Scholar 

  56. K. Yasuda, C. Kinoshita, R. Morisaki and H. Abe, Phil. Mag., A78 (1998), 583.

    ADS  Google Scholar 

  57. K. Yasuda, C. Kinoshita, M. Ohmura and H. Abe, Nucl. Instr. and Meth. Phys. Res., B166–167 (2000), 107.

    Article  Google Scholar 

  58. K. Yasuda and C. Kinoshita, Nucl. Instr. and Meth. Phys. Res., B191 (2002), 559.

    Article  ADS  Google Scholar 

  59. C. Kinoshita, K. Fukumoto, K. Fukuda, F.A. Garner and G.W. Hollenberg, J. Nucl. Mater., 219 (1995), 143.

    Article  CAS  Google Scholar 

  60. C. Kinoshita and S.J. Zinkle, J. Nucl. Mater., 233–237 (1996), 129.

    Google Scholar 

  61. K.E. Sickafus, N. Yu and M. Nastasi, Nucl. Instr. and Meth. in Phys. Res., B116 (1996), 85.

    Article  ADS  Google Scholar 

  62. K. Yasuda, C. Kinoshita, K. Fukuda and F.A. Garner, J. Nucl. Mater., 283–287 (2000), 937.

    Article  Google Scholar 

  63. K. Yasuda, T. Higuchi, K. Shimada, C. Kinoshita, K. Tanaka and M. Kutsuwada, Philos. Mag. Lett., 83 (2003), 21.

    Article  ADS  CAS  Google Scholar 

  64. T. Higuchi, K. Yasuda, K. Tanaka, K. Shiiyama and C. Kinoshita, Nucl. Instr. and Meth. in Phys. Res., B206 (2003), 103.

    Article  ADS  CAS  Google Scholar 

  65. http://www.ansys.com/

    Google Scholar 

  66. G.P. Pells and Stahopoulos, Rad. Effects, 74 (1983), 181.

    Article  CAS  Google Scholar 

  67. W.E. Lee, M.L. Jenkins and G.P. Pells, Philos. Mag., A51 (1985), 639.

    Google Scholar 

  68. K. Yasuda, C. Kinoshita, M. Kutsuwada and T. Hirai, J. Nucl. Mater., 233–237 (1996), 1051.

    Article  Google Scholar 

  69. W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics 2nd Edition, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Kinoshita, C. (2007). MICROSTRUCTURAL EVOLUTION OF IRRADIATED CERAMICS. In: Sickafus, K.E., Kotomin, E.A., Uberuaga, B.P. (eds) Radiation Effects in Solids. NATO Science Series, vol 235. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5295-8_8

Download citation

Publish with us

Policies and ethics