ACCELERATED MOLECULAR DYNAMICS METHODS

  • Blas P. Uberuaga
  • Arthur F. Voter
Conference paper
Part of the NATO Science Series book series (NAII, volume 235)

Abstract

The evolution of radiation damage in materials is a classic example of a problem that spans many time and length scales. The initial production of damage occurs on the atomic scale via collision cascades that take place on the picosecond time scale. However, this damage ultimately manifests itself macroscopically in the form of swelling or cracking which can take years to develop. There is a wide range of phenomena that bridge these two extremes, including defect diffusion, annihilation and aggregation, the formation of interstitial loops and voids, and the development of more complex microstructure. As a result, no one simulation method can be employed to study the problem of radiation damage on all relevant time and length scales. Rather, a combination of many techniques must be used to address this problem.

Keywords

Pyrolysis Correlate Crossing Paral Plutonium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    A. F. Voter, F. Montalenti, and T. C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002).CrossRefGoogle Scholar
  2. [2]
    B. P. Uberuaga, F. Montalenti, T. C. Germann, and A. F. Voter, In S. Yip, editor, Handbook of Materials Modeling, page 629. Springer, The Netherlands, 2005.CrossRefGoogle Scholar
  3. [3]
    D. Chandler, J. Chem. Phys. 68, 2959 (1978).CrossRefADSGoogle Scholar
  4. [4]
    A. F. Voter and J. D. Doll, J. Chem. Phys. 82, 80 (1985).CrossRefADSGoogle Scholar
  5. [5]
    C. H. Bennett, in Algorithms for Chemical Computation, edited by R. E. Christofferson (American Chemical Society, Washington, DC, 1977), p. 63.CrossRefGoogle Scholar
  6. [6]
    R. Marcelin, Ann. Physique 3, 120 (1915).Google Scholar
  7. [7]
    E. P. Wigner, Z. Phys. Chemie B 19, 203 (1932).Google Scholar
  8. [8]
    H. Eyring, J. Chem. Phys. 3, 107 (1935).CrossRefGoogle Scholar
  9. [9]
    P. Pechukas, Annu. Rev. Phys. Chem. 32, 159 (1981).CrossRefGoogle Scholar
  10. [10]
    D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein, J. Phys. Chem. 100, 12771 (1996).CrossRefGoogle Scholar
  11. [11]
    A. F. Voter and J. D. Doll, J. Phys. Chem. 80, 5832 (1984).CrossRefGoogle Scholar
  12. [12]
    B. J. Berne, M. Borkovec, and J. E. Straub, J. Phys. Chem. 92, 3711 (1988).CrossRefGoogle Scholar
  13. [13]
    G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).CrossRefGoogle Scholar
  14. [14]
    A. F. Voter. Phys. Rev. B 57, 13985 (1998).CrossRefADSGoogle Scholar
  15. [15]
    B. P. Uberuaga, S. J. Stuart and A. F. Voter, submitted for publication.Google Scholar
  16. [16]
    M. Terrones, F. Banhart, N. Grobert, J. C. Charlier, H. Terrones, and P. M. Ajayan, Phys. Rev. Lett. 89, 075505 (2002).PubMedCrossRefADSGoogle Scholar
  17. [17]
    B. P. Uberuaga, A. E. Voter, K. K. Sieber, and D. S. Sholl, Phys. Rev. Lett. 91, 105901 (2003).PubMedCrossRefADSGoogle Scholar
  18. [18]
    O. Kum, B. M. Dickson, S. J. Stuart, B. P. Uberuaga, and A. F. Voter, J. Chem. Phys. 121, 9808 (2004).PubMedCrossRefADSGoogle Scholar
  19. [19]
    B. P. Uberuaga, S. M. Valone, M. I. Baskes, and A. F. Voter, AIP Conference Proceedings 673, 213 (2003).CrossRefADSGoogle Scholar
  20. [20]
    M. Shirts and V. S. Pande, Science, 290, 1903 (2000).CrossRefGoogle Scholar
  21. [21]
    A. F. Voter, J. Chem. Phys. 106, 4665 (1997).CrossRefADSGoogle Scholar
  22. [22]
    J. P. Valleau and S. G. Whittington, In B. J. Berne, editor, Statistical Mechanics. A. A Modern Theoretical Chemistry, volume 5, pages 137–68. Plenum, New York, 1977.Google Scholar
  23. [23]
    B. J. Berne, G. Ciccotti, and D. F. Coker, editors, Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific, Singapore, 1998.Google Scholar
  24. [24]
    R. A. Miron and K. A. Fichthorn, J. Chem. Phys. 119, 6210 (2003).CrossRefADSGoogle Scholar
  25. [25]
    M. R. Sørensen and A. F. Voter, J. Chem. Phys. 112, 9599 (2000).CrossRefADSGoogle Scholar
  26. [26]
    F. Montalenti and A. F. Voter, J. Chem. Phys. 116, 4828 (2002).CrossRefGoogle Scholar
  27. [27]
    G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999).CrossRefADSGoogle Scholar
  28. [28]
    B. P. Uberuaga, R. Smith, A. R. Cleave, F. Montalenti, G. Henkelman, R. W. Grimes, A. F. Voter, and K. E. Sickafus, Phys. Rev. Lett. 92, 115505 (2004).PubMedCrossRefADSGoogle Scholar
  29. [29]
    B. P. Uberuaga, R. Smith, A. R. Cleave, G. Henkelman, R. W. Grimes, A. F. Voter, and K. E. Sickafus, Phys. Rev. B 71, 104102 (2005).CrossRefADSGoogle Scholar
  30. [30]
    F. Montalenti, M. R. Sørensen, and A. F. Voter, Phys. Rev. Lett. 87, 126101 (2001).PubMedCrossRefADSGoogle Scholar
  31. [31]
    J. A. Sprague, F. Montalenti, B. P. Uberuaga, J. D. Kress, and A. F. Voter, Phys. Rev. B 66, 205415 (2002).CrossRefADSGoogle Scholar
  32. [32]
    D. J. Harris, M. Y. Lavrentiev, J. H. Harding, N. L. Allan, and J. A. Purton, J. Phys.: Condens. Matter 16, L187 (2004).CrossRefADSGoogle Scholar
  33. [33]
    M. Cogoni, B. P. Uberuaga, A. F. Voter, and L. Colombo. Phys. Rev. B 71, 121203 (2005).CrossRefADSGoogle Scholar
  34. [34]
    R. A. Miron and K. A. Fichthorn, Phys. Rev. Lett. 93, 128301 (2004).PubMedCrossRefADSGoogle Scholar
  35. [35]
    R. A. Miron and K. A. Fichthorn, Phys. Rev. B 72, 035415 (2005).CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Blas P. Uberuaga
    • 1
  • Arthur F. Voter
    • 1
  1. 1.Los Alamos National Laboratory, Los AlamosNew MexicoUSA

Personalised recommendations