Skip to main content

EXPOSURE OF BONE TO IONIZING RADIATION

  • Conference paper
Radiation Effects in Solids

Part of the book series: NATO Science Series ((NAII,volume 235))

  • 6363 Accesses

Abstract

Interest in the effects of the action of electromagnetic ionizing radiation on bone arises from medical applications of ionizing radiation. Gamma irradiation is commonly used for preservation and sterilization in bone banking. It is a most popular preservation means in tissue banking. The selection of a sterilization dose is a compromise between a dose that is low enough to preserve important biological properties of tissue allografts and high enough to inactivate as many microorganisms as possible. The problem is additionally complicated by the possible presence of pathogenic viruses such as the human immunodeficiency virus (HIV), hepatitis viruses and others. The currently recommended dose in bone banking is 25-35 k Gy, which inactivates bacteria, but it is ineffective in the case of viruses. The advantage of such sterilization over autoclaving and chemical sterilization is that irradiation neither reduces osteogenic activity nor makes the toxic chemical agent applied in the sterilization remain in bone. Often, prior to irradiation, bone undergoes other treatments such as freeze-drying and lipid extraction, which enables shelf storage of years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. A. Bailey, J. Bendall, D. Rhodes: Int.J.Appl.Radiat.Isot. 13, (1962)

    Google Scholar 

  2. A. Bailey, W. Thromans: Radiat-Res. 23, (1964)

    Google Scholar 

  3. L. Kubisz, S. Mielcarek, F. Jaroszyk: Int J Biol Macromol 33, 1–3 (2003)

    Article  CAS  Google Scholar 

  4. E. Marzec: Int.J.Biol.Macromol. 17, 1 (1995)

    Article  Google Scholar 

  5. A. Bailey, D. Rhodes, C. Cater: Radiat.Res. 22, (1964)

    Google Scholar 

  6. A. Charlesby: Poymer Journal 19, 5 (1987)

    Google Scholar 

  7. C. Gibbs, D. Gajdusek, R. Latarjet: Proc.Natl.Acad.Sci.USA. 75, 12 (1978)

    Article  Google Scholar 

  8. M. Sintzel, A. Merkli, C. Tabatabay et al: Drug Development & Industrial Pharmacy 23, 9 (1997)

    Google Scholar 

  9. W. Landis: Bone 16, 5 (1995)

    Article  Google Scholar 

  10. S. Weiner, H. Wagner: Annual Review of Materials Science 28, (1998)

    Google Scholar 

  11. P. Kronick, P. Cooke: Connect Tissue Res 33, 4 (1996)

    Google Scholar 

  12. E. Marzec, L. Kubisz, F. Jaroszyk: Int. J. Biol. Macromol. 18, 1–2 (1996)

    Article  Google Scholar 

  13. S. Nomura, A. Hiltner, J. Lando et al: Biopolymers 16, (1977)

    Google Scholar 

  14. J. Currey, J. Foreman I. Laketic et al: J.Orthop. Res. 15, 1 (1997)

    Article  Google Scholar 

  15. A. Komender: Mater.Med.Pol. 8, (1976)

    Google Scholar 

  16. N. Traitafyllou, E. Sotiropoulos, J. Trantafyllou: Acta Orthop.Belg 41, Supplement (1975)

    Google Scholar 

  17. M. Anderson, J. Keyak, H. Skinner: J-Bone-Joint-Surg. 74, 5 (1992)

    Google Scholar 

  18. P. Simonian, E. Conrad, J. Chapman et al: Clin.Orthop. 302, (1994)

    Google Scholar 

  19. A. Hamer, J. Strachan, M. Black et al: J.Bone.Joint.Surg.Br 78, 3 (1996)

    Google Scholar 

  20. A. Calafiori, L. Imbrogno, G. Martino et al: Boll Soc Ital Biol Sper 69, 11 (1993)

    Google Scholar 

  21. C. Chahine: Thermochimica Acta 365, 1–2 (2000)

    Article  Google Scholar 

  22. M. Fois, A. Lamure, M. Fauran et al: J. Polym. Sci. Part B-Polymer Physics 38, 7 (2000)

    Google Scholar 

  23. T. Sakae, H. Mishima, Y. Kozawa et al: Conn.Tiss.Res. 33, 1–3 (1995)

    Google Scholar 

  24. C. Miles, M. Ghelashvili: Biophys.J. 76, 6 (1999)

    Google Scholar 

  25. A. Rochdi, L. Foucat, J. Renou: Food Chemistry, 69, (2000)

    Google Scholar 

  26. A. Bigi, A. Fichera, N. Roveri et al: Int.J.Biol.Macromol. 9, (1987)

    Google Scholar 

  27. R. Usha, T. Ramasami: Thermochimica Acta 338, (1999)

    Google Scholar 

  28. R. Usha, T. Ramasami: Thermochimica Acta 356, 1–2 (2000)

    Article  Google Scholar 

  29. C. Miles, A.Bailey: Proc.Indian Acad.Sci. 111, 1 (1999)

    Google Scholar 

  30. C. Miles, T. Burjanadze: Biophysical Journal 80, 3 (2001)

    Article  Google Scholar 

  31. K. Ciesla, Y. Roos, W. Gluszewski: Rad.Phys.Chem. 58, (2000)

    Google Scholar 

  32. R. Pethig: Dielectric and electronic properties of biological materials. (John Wiley & Sons 1979)

    Google Scholar 

  33. R. Pethig: Ferroelectrics 86, (1988)

    Google Scholar 

  34. G. Ramachandran:Int.J.Peptide Res. 31, (1988)

    Google Scholar 

  35. F. Jaroszyk, E. Marzec: J.Mar.Sci. 29, (1994)

    Google Scholar 

  36. L. Kubisz: Polish J. Med. Phys. and Engineering 9, 3 (2003)

    Google Scholar 

  37. E. Marzec, L. Kubisz:J.Non-Crystalline Solids, 305, 1–3 (2002)

    Article  Google Scholar 

  38. J. Behari, S. Guha, P. Agarwal: Connect Tissue Res 2, 4 (1974)

    Article  Google Scholar 

  39. L. Kubisz: Int J Biol Macromol 26, 1 (1999)

    Article  Google Scholar 

  40. W. Meyer, H. Neldel: Zeit.Tech.Phys. 18, 588 (1937)

    CAS  Google Scholar 

  41. L. Kubisz: Physica Medica 20, Suppl. (2004)

    Google Scholar 

  42. J. Vlcakova, P. Saha, V. Kreslarek et al: Synthetic Metals 113, (2000)

    Google Scholar 

  43. K. Ostrowski, A. Dziedzic-Goclawska, W. Stachowicz et al: J.Ann.N.Y.Acad.Sci. 238, (1974)

    Google Scholar 

  44. J. Bowes, J. Moss: Radiat-Res. 16, (1962)

    Google Scholar 

  45. J. Cassel: J.Am.Leath.Chem. 54, 8 (1959)

    Google Scholar 

  46. L. Kubisz, F. Jaroszyk: Sci. Proc. Riga Techn. Univ. Transport and Engineering 6, (2002)

    Google Scholar 

  47. L. Kubisz, F. Jaroszyk: Current Topics in Biophysics 17, (1993)

    Google Scholar 

  48. K. Pietrucha: Polymers in Medicine 19, 1–2 (1989)

    Google Scholar 

  49. H. Al-Khantani, H. Abu-Tarboush, M. Atia et al: Radiat.Phys.Chem. 51, 1 (1998)

    Article  Google Scholar 

  50. P. Alexander, J. Lett: Comp.Biochem. 27, (1967)

    Google Scholar 

  51. E. Pankowski, L. Kubisz: International Conference on Medical Physics and Engineering in Health Care, Poznń, 18–20. 10 2001, (2001)

    Google Scholar 

  52. E. Pankowski, L. Kubisz: IMFBE Proceedings 3, 1 (2002)

    Google Scholar 

  53. W. Stachowicz, K. Ostrowski, A. Dziedzic-Goclawska et al: Nukleonika 15, 1 (1970)

    Google Scholar 

  54. W. Gordy, W. Ard, H. Shields H.: Proc.Natl.Acad Sci U.S.A 41, (1955)

    Google Scholar 

  55. S. Mascarenhas, O. Baffa Filho, M. Ikeya: Am.J.Phys.Anthropol. 59, (1982)

    Google Scholar 

  56. W. Stachowicz, G. Burlinska, J. Michalik et al.:Nukleonika 38, 3 (1993)

    Google Scholar 

  57. W. Stachowicz, J. Michalik, G. Burlinska et al.: Appl-Radiat-Isot. 46, 10 (1995)

    Google Scholar 

  58. M. Polat, M. Korkmaz, O. Korkmaz: Rad.Phys.Chem. 49, 4 (1997)

    Google Scholar 

  59. M. Polat, M. Korkmaz, B. Dulkan et al: Rad.Phys.Chem. 49, 3 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Kubisz, L. (2007). EXPOSURE OF BONE TO IONIZING RADIATION. In: Sickafus, K.E., Kotomin, E.A., Uberuaga, B.P. (eds) Radiation Effects in Solids. NATO Science Series, vol 235. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5295-8_19

Download citation

Publish with us

Policies and ethics