Skip to main content

RESIDUAL STRESS EVOLUTION DURING ENERGETIC PARTICLE BOMBARDMENT OF THIN FILMS

  • Conference paper
Radiation Effects in Solids

Part of the book series: NATO Science Series ((NAII,volume 235))

Abstract

A variety of surface modification and surface coating techniques are used in industry to modify the near-surface properties of the substrate materials. In the surface modification by ion implantation process, a implanted ions is formed. In the ion implantation process the substrate not only provides a backing for the surface alloy but also contributes the material that makes up part of the surface alloy. In this process, there is a slow transition between the surface modified zone and the substrate. The surface alloy composed of a combination of the substrate elements and the range of applications for such ion implantation-based surface engineering includes automotive and aerospace components, orthopedic implants, textile-manufacturing components, cutting and machining tools (e.g., punches, tapes, scoring dies, and extrusion dies), etc [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Nastasi M., Mayer J.W., and Hirvonen J.K., Ion-Solid Interactions: Fundamentals and Applications. Cambridge University Press, Cambridge, 1996.

    Book  Google Scholar 

  2. Powell R.A. and Rossnagel, S., PVD for Microelectronics, 26, Academic Press (1999).

    Google Scholar 

  3. Doerner M.F. and Nix W.D., Stress and Deformation Processes in Thin Films on Substrates, CRC Critical Reviews in Solid State Materials Sciences, 1988; 14:225.

    Article  CAS  Google Scholar 

  4. Roy R.A., Cuomo J.J., and Yee D.S., J. Vac. Sci. Tech., 1988; A6:1621.

    ADS  Google Scholar 

  5. Hoffman D.W., Thin Solid Films, 1983; 107: 353.

    Article  CAS  Google Scholar 

  6. Koch R., J. Phys.: Condens. Matter, 1994; 6:9519.

    Article  ADS  CAS  Google Scholar 

  7. Tu K.N., Mayer J.W. and Feldman L.C., Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Macmillan Publishing Company, New York, 1992.

    Google Scholar 

  8. Ohring M., The Materials Science of Thin Films, Academic Press, New York (1992).

    Google Scholar 

  9. Stoney G.G., Proc. Roy. Soc. (London), 1909; A82:172.

    ADS  Google Scholar 

  10. Flinn P.A., Gardner D.S. and Nix W.D., IEEE Transactions on Electron Devices, 1987; ED-34:689.

    Article  CAS  Google Scholar 

  11. Van Sambeek A.I. and Averback R.S., Mat. Res. Soc. Symp. Proc., 1996; 396:137.

    Google Scholar 

  12. Volkert C.A., J. Appl. Phys., 1991; 70:3521.

    Article  ADS  CAS  Google Scholar 

  13. Kinosita K., Maki K., Nakamizo K. and Takeuchi K., Japanese Journal of Applied Physics, 1967; 6:42.

    Article  ADS  CAS  Google Scholar 

  14. Misra A., Fayeulle S., Kung H., Mitchell T.E. and Nastasi M., Nucl. Inst. And Methods B, 1999; 148:211.

    Article  ADS  CAS  Google Scholar 

  15. Kim Y.S. and Shin S.C., Mat. Res. Soc. Symp. Proc., 1995; 382:285.

    CAS  Google Scholar 

  16. Shull A.L. and Spaepen F., J. Appl. Phys., 1996; 80:6243.

    Article  ADS  CAS  Google Scholar 

  17. Ramaswamy V., Clemens B.M. and Nix W.D., Mat. Res. Soc. Symp. Proc., 1998; 528:161.

    CAS  Google Scholar 

  18. Clemens B.M. and Bain J.A., MRS Bulletin, 1992; July:46.

    Google Scholar 

  19. Dosch H., Phys. Rev.B, 1987; 35:2137.

    Article  ADS  CAS  Google Scholar 

  20. Noyan I.C. and Cohen J.B., Residual Stress: Measurement by Diffraction and Interpretation. Springer-Verlag, New York, 1987.

    Google Scholar 

  21. Segmuller A. and Murakami M., “X-ray Diffraction Analysis of Strains and Stresses in Thin Films”, in Treatise on Materials Science and Technology, 27, 143, edited by H. Herbert, Academic Press, New York, (1988).

    Google Scholar 

  22. Cuomo J.J. and Rossnagel S.M., Nucl. Instrum. & Meth., 1987; B19/20: 963.

    Article  Google Scholar 

  23. Hirvonen J.K., Mater. Sci. Reports, 1991; 6:215.

    Article  CAS  Google Scholar 

  24. Smidt F.A., Int. Mater. Rev., 1990; 35:61.

    CAS  Google Scholar 

  25. Windishmann H., Crit. Rev. Sol. St. & Mat. Sci., 1992; 19:547.

    Article  Google Scholar 

  26. Jouan P.Y. and Lemperiere G., Vacuum, 1991; 42:927.

    Article  CAS  Google Scholar 

  27. Kadlec S., Quaeyhaegens C., Knuyt G. and Stals L.M., Surf. Coat. Tech., 1997; 89:177.

    Article  CAS  Google Scholar 

  28. Petrov I., Myers A., Greene J.E. and Abelson J.R., J. Vac. Sci. Technol. A, 1994; 12:2846.

    Article  ADS  CAS  Google Scholar 

  29. Somekh R.E., J. Vac. Sci. Technol. A, 1984; 2:1285.

    Article  ADS  CAS  Google Scholar 

  30. Rose J.H., Smith J.R., and Ferrante J., Phys. Rev. B, 1983; 28:1835.

    Article  ADS  CAS  Google Scholar 

  31. Rose J.H., Smith J.R., Guines F., and Ferrante J., Phys. Rev. B, 1984; 29: 2963.

    Article  CAS  Google Scholar 

  32. Banerjea A. and Smith J.R., Phys. Rev. B, 1988; 37:6632.

    Article  ADS  Google Scholar 

  33. Ziegler J.F., Biersack J.P., and Littmark U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

    Google Scholar 

  34. Ehrhart P., Jung P., Schultz H., and Ullmaier H., in Atomic Defects in Metals, Landolt_Bornstein, Group III, 25 (Springer-Verlag, Berlin, 1992) Chapter 2.

    Google Scholar 

  35. Machlin E.S., Materials Science in Microelectronics–The Relationships between Thin Film Processing and Structure, vol. 1, pp 157–184, GIRO press, NY, (1995).

    Google Scholar 

  36. Nix W.D., and Clemens B.M., J. Mater. Res., 1999; 14:3467.

    Article  ADS  CAS  Google Scholar 

  37. Thompson C.V., J. Mater. Res., 1999; 14:3164.

    Article  ADS  CAS  Google Scholar 

  38. Thompson C.V. and Carel R., J. Mech. Phys. Solids, 1996; 44:657.

    Article  CAS  Google Scholar 

  39. Cammarata R.C., Trimble T.M. and Srolovitz D.J., J. Mater. Res., 2000; 15:2468.

    Article  ADS  CAS  Google Scholar 

  40. Phillips M.A., Ramaswamy V., Clemens B.M. and Nix W.D., J. Mater. Res., 2000; 15:2540.

    Article  ADS  CAS  Google Scholar 

  41. Floro J.A., Hearne S.J., Hunter J.A., Kotula P., Chason E., Seal S.C. and Thompson C.V., J. Appl. Phys., 2001; 89:4886.

    Article  ADS  CAS  Google Scholar 

  42. Seel S.C., Thompson C.V., Hearne S.J. and Floro J.A., J. Appl. Phys., 2000; 88:7079.

    Article  ADS  CAS  Google Scholar 

  43. Freund L.B. and Chason E., J. Appl. Phys., 2001; 89:4866.

    Article  ADS  CAS  Google Scholar 

  44. Chason E., Sheldon B.W., Freund L.B., Floro J.A. and Hearne S.J., Phys. Rev. Lett., 2002; 88:156103.

    Article  PubMed  ADS  CAS  Google Scholar 

  45. Sheldon, B.W., Lau, K.H.A., and Rajamani, A, Journal of Applied Physics, 2001; 90:5097.

    Article  ADS  CAS  Google Scholar 

  46. Misra A., Kung H., Mitchell T.E., and Nastasi M., Journal of Materials Research, 2000; 15:756.

    Article  ADS  CAS  Google Scholar 

  47. Cammarata R.C. and Sieradzki K., Ann. Rev. Mat. Sci., 1994; 24:215.

    Article  CAS  Google Scholar 

  48. Spaepen F., Acta Mater., 2000; 48:31.

    Article  CAS  Google Scholar 

  49. Cammarata R.C., Sieradzki K. and Spaepen F., J. Appl. Phys., 2000; 87: 1227.

    Article  ADS  CAS  Google Scholar 

  50. Adams D.P., Parfitt L.J., Billelo J.C., Yalisove S.M. and Rek Z.U., Thin Solid Films, 1995; 266: 52.

    Article  CAS  Google Scholar 

  51. Misra A., Fayeulle S., Kung H., Mitchell T.E. and Nastasi M., Applied Physics Letters, 1998; 73:891.

    Article  ADS  CAS  Google Scholar 

  52. Misra A. and Nastasi M., Journal of Materials Research, 1999; 14:4466.

    Article  CAS  Google Scholar 

  53. Misra A. and Nastasi M., Applied Physics Letters, 1999; 75:3123.

    Article  ADS  CAS  Google Scholar 

  54. Misra A. and Nastasi M., Journal of Vacuum Science and Technology-A, 2000; 18:2517.

    Article  ADS  CAS  Google Scholar 

  55. Misra A. and Nastasi M., Nucl. Inst. Methods B, 2001; 175/177:688.

    Article  ADS  Google Scholar 

  56. Misra A. and Nastasi M., Adhesion Aspects of Thin Films, 2001; 1:17.

    Google Scholar 

  57. Ness J.N., Stobbs W.M. and Page T.F., Phil. Mag. A, 1986; 54:679.

    Article  CAS  Google Scholar 

  58. Grovenor C.R.M., Hentzell H.T.G., and Smith D.A., Acta Metall., 1984; 32:773.

    Article  CAS  Google Scholar 

  59. Hoffman R.W., Thin Solid Films, 1976; 34:185.

    Article  CAS  Google Scholar 

  60. Müller K.H., J. Appl. Phys., 1987; 62:1796.

    Article  ADS  Google Scholar 

  61. Müller K.H., J. Appl. Phys., 1986; 59:2803.

    Article  ADS  Google Scholar 

  62. Müller K.H., Phys. Rev. B, 1987; 35:7906.

    Article  ADS  Google Scholar 

  63. Mitra R., Hoffman R.A., Madan A. and Weertman J.R., J. Mater. Res., 2001; 16:1010.

    Article  ADS  CAS  Google Scholar 

  64. Girifalco L.A. and Weizer V.G., Phys. Rev., 1959; 114:687.

    Article  ADS  CAS  Google Scholar 

  65. Itoh M., Hori M. and Nadahara S., J. Vac. Sci. Tech. B, 1991; 9:149.

    Article  CAS  Google Scholar 

  66. Hoagland R.G., LANL, unpublished work.

    Google Scholar 

  67. Sprague J.A., NRL, unpublished work.

    Google Scholar 

  68. Windischmann H., J. Appl. Phys., 1987; 62:1800.

    Article  ADS  CAS  Google Scholar 

  69. Davis C.A., Thin Solid Films, 1993; 226:30.

    Article  CAS  Google Scholar 

  70. Knuyt G., Lauwerens W., Stals L.M., Thin Solid Films, 2000; 370:232.

    Article  CAS  Google Scholar 

  71. Robinson M.T., Phil. Mag., 1965; 12:741.

    Article  Google Scholar 

  72. Robinson M.T. and Oen O.S., J. Nucl. Mater., 1982; 110:147.

    Article  CAS  Google Scholar 

  73. Sigmund P., Radiation Effects, 1969; 1:15.

    Article  Google Scholar 

  74. Bacon D.J., Calder A.F. and Cao F., Radiation Effects and Defects in Solids, 1997; 141:283.

    Article  CAS  Google Scholar 

  75. Lidiard A.B. and Perrin R., Phil. Mag., 1973; 14:49.

    Google Scholar 

  76. Jain A., Loganathan S. and Jain U., Nucl. Inst. and Methods B, 1997; 127/128:43.

    Article  ADS  CAS  Google Scholar 

  77. Clemens B.M., Kung H. and Barnett S.A., MRS Bulletin, 1999; 24:20.

    CAS  Google Scholar 

  78. Misra A. and Kung H., Advanced Engineering Materials, 2001; 3:217.

    Article  CAS  Google Scholar 

  79. Embury J.D. and Hirth J.P., Acta Met., 1994; 42:2051.

    Article  Google Scholar 

  80. Nix W.D., Scripta Mat., 1998; 39:545.

    Article  CAS  Google Scholar 

  81. Misra A., Hirth J.P. and Kung H., Phil. Mag. A, 2002; 82:2935.

    Article  ADS  CAS  Google Scholar 

  82. Thompson C.V., J. Mater. Res., 1993; 8:237.

    Article  ADS  Google Scholar 

  83. Fleischer R.L., in The strengthening of Metals, (edited by D. Peckner), pp. 93–162, Reinhold Press, NY (1964).

    Google Scholar 

  84. Window B., Sharples F. and Savvides N., J. Vac. Sci. Tech. A, 1988; 6:2333.

    Article  ADS  CAS  Google Scholar 

  85. Nastasi M., Fayeulle S., Lu Y.-C., and Kung H., Mat Sci. and Engr. 1998; A253:202.

    Article  CAS  Google Scholar 

  86. Brighton D.R. and Hubler G.K., Nucl. Instr. Meth., 1987; B28: 527.

    ADS  CAS  Google Scholar 

  87. Hirsch E.H. and Varga I.K., Thin Solid Films, 1978; 52:445.

    Article  CAS  Google Scholar 

  88. Trinkaus H., J. Nucl. Materials, 1995; 223:196.

    Article  CAS  Google Scholar 

  89. Brongersma M.L., Snoeks E., van Dillen T., and Polman A., J. Appl. Phys., 2000; 88:59.

    CAS  Google Scholar 

  90. Mayr S.G. and Averback R.S., Phys. Rev. Lett., 2001; 87:6106.

    ADS  Google Scholar 

  91. Jain A. and Jain U., Thin Solid Films, 1995; 256:116.

    Article  CAS  Google Scholar 

  92. Jain A., Surface and Coatings Technology, 1998; 104:20.

    Article  Google Scholar 

  93. Krebs H.U., Luo Y., Stormer M., Crespo A., Schaaf P. and Bolse W., Appl. Phys. A, 1995; 61:591.

    Article  ADS  Google Scholar 

  94. Gladyszewski G., Goudeau Ph., Naudon A., Jaouen C. and Pacaud J., Appl. Surf. Sci., 1993; 65/66:28.

    Article  Google Scholar 

  95. Pranevicius L., Badawi K.F., Durand N., Delafond J., Goudeau Ph., Surf. Coatings and Technology, 1995; 71: 254.

    Article  CAS  Google Scholar 

  96. Tamulevicius S., Pozela I. and Jankauskas J., J. Phys. D: Appl. Phys., 1998; 31:2991

    Article  ADS  CAS  Google Scholar 

  97. Snoeks E., Boutros K.S. and Barone J., Appl. Phys. Lett., 1997; 71:267.

    Article  ADS  CAS  Google Scholar 

  98. Hardtke C., Schilling W. and Ullmaier H., Nucl. Instr. Meth. B, 1991; 59/60: 377.

    Article  ADS  Google Scholar 

  99. Hardtke C., Ullmaier H., Schilling W. and Gebauer M., Thin Solid Films, 1989; 175:61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Misra, A., Nastasi, M. (2007). RESIDUAL STRESS EVOLUTION DURING ENERGETIC PARTICLE BOMBARDMENT OF THIN FILMS. In: Sickafus, K.E., Kotomin, E.A., Uberuaga, B.P. (eds) Radiation Effects in Solids. NATO Science Series, vol 235. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5295-8_17

Download citation

Publish with us

Policies and ethics