Skip to main content

ION BEAM SYNTHESIS AND TAILORING OF NANOSTRUCTURES

  • Conference paper
Radiation Effects in Solids

Part of the book series: NATO Science Series ((NAII,volume 235))

Abstract

The basic electronic structure properties of materials are all related to some characteristic lengths whose scales depend on which property is considered. Examples are the Fermi wavelength or the electron mean free path for conductivity, the Debye wavelength for phonons, the dipolar interaction distance for electromagnetic interactions, the pair correlation length for superconductivity, etc., all of which vary typically from ~ 0.1 to several tens of nanometers. A fundamental question in nanoscience is what happens when the physical size of the sample shrinks down to the characteristic length scale of one or another of its basic physical properties? The sample’s electrical, optical, magnetic or mechanical properties will then be radically affected by its size and shape, by the symmetry of its environment, and by its coupling (chemical bonds, radiation, etc.) to the latter. Their hybrid “betwixt atom and bulk” matter nature often directly reflects their electrical, optical or mechanical properties. As we know, the quantum properties are extremely sensitive to the boundary conditions of wave functions in the nano-objects. Hence, not only do such studies require small samples, but in order to be meaningful, they require samples such as nanoclusters or ultrathin films and multilayers with well-controlled shapes, sizes, and interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Nanoelectronics and Information Technology, ed. R. W ä ser, Wiley-VCH (2003)

    Google Scholar 

  2. N. Mathur and P. Littlewood, Nature Materials 3 (2005) 207

    Article  ADS  CAS  Google Scholar 

  3. J. Gierak et al., Microelectron. Eng. 78–79 (2005) 266 and 73–74 (2004) 610

    Article  CAS  Google Scholar 

  4. J. Lohau et al., Appl. Phys. Lett. 78 (2001) 990; see also G. Xiong et al., Appl. Phys. Lett. 79 (2001) 3461

    Article  ADS  CAS  Google Scholar 

  5. “Semiconductor Quantum Dots,” MRS Bull. 23(2), Feb. 1998

    Google Scholar 

  6. B. Prével et al., Appl. Surf. Sci. 226 (2004) 173; M.D. McMahon et al., Phys. Rev. 73 (2006) 041401(R)

    Article  ADS  CAS  Google Scholar 

  7. S. Haussman et al., Jap. J. Appl. Phys. (Part 1) 38 (1999) 7148

    Article  Google Scholar 

  8. T. Müller et al., Mat. Sci. Eng. C19 (2002) 209

    Google Scholar 

  9. D. Weller and A. Moser, IEEE Trans. Magn. 35 (1999) 4423

    Article  CAS  Google Scholar 

  10. M.G. LeBoité et al., Mater. Lett. 6 (1988) 1089; A. Traverse et al., Europhys. Lett. 8 (1989) 633

    Google Scholar 

  11. C. Chappert et al., Science 280 (1998) 1919

    Article  PubMed  ADS  CAS  Google Scholar 

  12. J. Ferré et al., J. Phys. D36 (2003) 1

    Google Scholar 

  13. S. Chou et al., Science 272 (1996) 85

    Article  ADS  CAS  Google Scholar 

  14. T. Devolder et al., Appl. Phys. Lett. 74 (1999) 3383; T. Devolder et al., J. Magn. Mag. Mat. 249 (2002) 452

    Article  ADS  CAS  Google Scholar 

  15. S.Sun et al., Science 287 (2000) 1989; S. Sun, Adv. Mat. 18 (2006) 396

    Article  PubMed  ADS  CAS  Google Scholar 

  16. H. Bernas et al., Phys. Rev. Lett. 91 (2003) 077203

    Article  PubMed  ADS  CAS  Google Scholar 

  17. J. Noguès and I. K. Schuller, J. Magn. Mag. Mat. 192 (1999) 203

    Article  ADS  Google Scholar 

  18. Miltenyi et al., Phys. Rev. Lett. 84 (2000) 4224; Misra et al., J. Appl. Phys. 93 (2003) 8593

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Mougin et al., Phys. Rev. B63 (2001) 060409

    ADS  Google Scholar 

  20. Poppe et al., Europhys. Lett. 66 (2004) 430; J.V. Kim and R.L. Stamps, Appl. Phys. Lett. 79 (2001) 2785

    Article  ADS  CAS  Google Scholar 

  21. G. Mie, Ann. Physik, 25 (1908) 377

    Article  ADS  CAS  Google Scholar 

  22. M.Bawendi et al., Ann. Rev. Phys. Chem. 41 (1990) 477

    CAS  Google Scholar 

  23. S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press. Cambridge, 1998)

    Book  Google Scholar 

  24. D.E. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Wokingham, England, 1981); K. Binder and D. Stauffer, Adv. Phys. 25 (1976) 343

    Google Scholar 

  25. I.M. Lifshitz and Slyozov, J. Phys. Chem. Solids 19 (1961) 35 and C. Wagner, Z. Elektrochem. 65 (1961) 581. See also [24].

    Article  Google Scholar 

  26. A.F. Hebard et al., J. Phys. D37 (2004) 511

    ADS  Google Scholar 

  27. S. Coffa and A. Polman, ed., Materials and Devices for Si-based Optoelectronics, Vol. 468, Materials Research Soc., Warrendale, Pa., (1998)

    Google Scholar 

  28. E. Boer, Ph.D. thesis, California Institute of Technology, Pasenda, California (2001)

    Google Scholar 

  29. S. Tiwari et al., Appl. Phys. Lett. 68 (1996) 1377

    Article  ADS  CAS  Google Scholar 

  30. K.H. Heinig et al., Appl. Phys. A77 (2003) 17

    ADS  Google Scholar 

  31. S. Roorda et al., Adv. Mat. 16, (2004) 235

    Article  CAS  Google Scholar 

  32. J. Penninkhof et al., Appl. Phys. Lett 83 (2003) 4137

    Article  ADS  CAS  Google Scholar 

  33. A. Bouhelier et al., Phys. Rev. Lett 95 (2006) 267405

    Article  ADS  CAS  Google Scholar 

  34. M. Toulemonde et al., Nucl. Inst. Meth. Phys. Res. B216 (2004) 1

    ADS  Google Scholar 

  35. A. Meldrum et al., J. Mater. Res. 14 (1999) 4489

    Article  CAS  Google Scholar 

  36. J. Philibert, Atom Movements: Diffusion and Mass Transport in Solids, Ed. Physique, Les Ulis (1991)

    Google Scholar 

  37. K.H. Heinig et al., Appl. Phys. 77 (2003) 17; M. Strobel, Ph.D. Thesis, Forschungzentrum Rossendorf, Germany (1999)

    Article  CAS  Google Scholar 

  38. M. Strobel et al., Nucl. Instr. Meth. in Phys. Res. B147 (1999) 343

    Article  ADS  Google Scholar 

  39. H. Trinkaus and S. Mantl, Nucl. Inst. Meth. Phys. Res. B 80/81 (1993) 862; V.A. Borodin et al., Phys. Rev. B56 (1997) 5332

    ADS  Google Scholar 

  40. R. Espiau de Lamaestre and H. Bernas, Phys. Rev. B73 (2006) 125317

    ADS  Google Scholar 

  41. P. Mazzoldi et al., Nucl. Instr. Meth. Phys. Res. 91 (1994) 478 and reference therein

    Article  ADS  CAS  Google Scholar 

  42. see review by R. A. Weeks, in Optical and Magnetic Properties of Ion Implanted Glasses, Materials Science and Technology Vol. 9, ed. J. Zarzycki, (VCH, Weinheim, 1991) 331

    Google Scholar 

  43. A. Perez et al., J. Mater. Res. 2 (1987) 910

    Article  ADS  CAS  Google Scholar 

  44. H. Hosono, J. Non-Cryst. Solids 187 (1995) 457

    Article  CAS  Google Scholar 

  45. A. Miotello et al., Phys. Rev. B63, (2001) 075409

    ADS  Google Scholar 

  46. P. Mazzoldi et al., Nucl. Instr. Meth. Phys. Res. B80/81 (1993) 1192

    Article  ADS  Google Scholar 

  47. R. Espiau de Lamaestre et al., Nucl. Instr. Meth. Phys. Res. 242 (2006) 214; R. Espiau de Lamaestre et al., J. Phys. Chem. B109 (2005) 19148; R. Espiau de Lamaestre et al., J. Non-Cryst. Solids 351 (2005) 3031

    Article  ADS  CAS  Google Scholar 

  48. R. Espiau de Lamaestre and H. Bernas, J. Appl. Phys. 98 (2005) 104310

    Article  CAS  Google Scholar 

  49. E. Valentin et al., Phys. Rev. Lett. 86 (2001) 99

    Article  PubMed  ADS  CAS  Google Scholar 

  50. Noriaki Itoh and Marshall Stoneham, Materials Modification by Electronic Excitation (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  51. J. Belloni et al., Nature 402 (1999) 865 and refs. therein

    Article  ADS  CAS  Google Scholar 

  52. R. Espiau de Lamaestre, Ph.D. Thesis, University of Paris (2005) 11

    Google Scholar 

  53. J. Belloni and M. Mostafavi, Metal Clusters in Chemistry 2 (1999) 1213

    Article  CAS  Google Scholar 

  54. A. Barkatt et al., J. Phys. Chem. 76 (1972) 203

    Article  CAS  Google Scholar 

  55. R.W. Gurney and N.F. Mott, Proc. Roy. Soc. A164 (1938) 151

    ADS  CAS  Google Scholar 

  56. A. Paul, Chemistry of Glasses (Chapman & Hall, New York, 1982); H.D. Schreiber et al., Glastechn. Ber. 60 (1987) 389

    Google Scholar 

  57. D. Manikandan et al., Nucl. Instr. Phys. Res. B198 (2002) 73

    Article  ADS  Google Scholar 

  58. G. Mattei et al., Phys. Rev. Lett. 90 (2003) 085502

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Bernas, H., de Lamaestre, R.E. (2007). ION BEAM SYNTHESIS AND TAILORING OF NANOSTRUCTURES. In: Sickafus, K.E., Kotomin, E.A., Uberuaga, B.P. (eds) Radiation Effects in Solids. NATO Science Series, vol 235. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5295-8_16

Download citation

Publish with us

Policies and ethics