Skip to main content

INTRODUCTION TO THE KINETIC MONTE CARLO METHOD

  • Conference paper
Radiation Effects in Solids

Part of the book series: NATO Science Series ((NAII,volume 235))

Abstract

Monte Carlo refers to a broad class of algorithms that solve problems through the use of random numbers. They .rst emerged in the late 1940’s and 1950’s as electronic computers came into use [1], and the name means just what it sounds like, whimsically referring to the random nature of the gambling at Monte Carlo, Monaco. The most famous of the Monte Carlo methods is the Metropolis algorithm [2], invented just over 50 years ago at Los Alamos National Laboratory. Metropolis Monte Carlo (which is not the subject of this chapter) offers an elegant and powerful way to generate a sampling of geometries appropriate for a desired physical ensemble, such as a thermal ensemble. This is accomplished through surprisingly simple rules, involving almost nothing more than moving one atom at a time by a small random displacement. The Metropolis algorithm and the numerous methods built on it are at the heart of many, if not most, of the simulations studies of equilibrium properties of physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. N. Metropolis, Los Alamos Science, 12, 125 (1987).

    MathSciNet  Google Scholar 

  2. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  CAS  Google Scholar 

  3. J.R. Beeler, Jr., Phys. Rev. 150, 470 (1966).

    Article  ADS  CAS  Google Scholar 

  4. D.G. Doran, Radiat. Eff. 2, 249 (1970).

    Article  Google Scholar 

  5. J.-M. Lanore, Rad. Eff. 22 153 (1974).

    Article  CAS  Google Scholar 

  6. H.L. Heinisch, D.G. Doran, and D.M. Schwartz, ASTM Special Technical Publication 725, 191 (1981).

    CAS  Google Scholar 

  7. H.L. Heinisch, J. Nucl. Mater. 117 46 (1983).

    Article  CAS  Google Scholar 

  8. R. Gordon, J. Chem. Phys. 48, 1408 (1968).

    Article  CAS  Google Scholar 

  9. F.F. Abraham and G.W. White, J. Appl. Phys. 41, 1841 (1970).

    Article  ADS  Google Scholar 

  10. C.S. Kohli and M.B. Ives, J. Crystal Growth 16, 123 (1972).

    Article  CAS  Google Scholar 

  11. G.H. Gilmer, J. Crystal Growth 35, 15 (1976).

    Article  Google Scholar 

  12. M. Bowker and D.A. King, Surf. Sci. 71, 583 (1978).

    Article  CAS  Google Scholar 

  13. D.A. Reed and G. Ehrlich, Surf. Sci. 105, 603 (1981).

    Article  CAS  Google Scholar 

  14. P.A. Rikvold, Phys. Rev. A 26, 647 (1982).

    Article  ADS  CAS  Google Scholar 

  15. E.S. Hood, B.H. Toby, and W.H. Weinberg, Phys. Rev. Lett. 55, 2437 (1985).

    Article  PubMed  ADS  CAS  Google Scholar 

  16. S.V. Ghaisas and A. Madhukar, J. Vac. Sci. Technol. B 3, 540 (1985).

    Article  CAS  Google Scholar 

  17. A.F. Voter, Phys. Rev. B 34, 6819 (1986).

    Article  ADS  CAS  Google Scholar 

  18. A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, J. Comp. Phys. 17, 10 (1975).

    Article  Google Scholar 

  19. K. Binder, in Monte Carlo Methods in Statistical Physics (Springer Topics in Current Physics, Vol. 7) edited by K Binder (Springer, Berlin 1979) p. 1.

    Google Scholar 

  20. K. Binder and M.H. Kalos, in Monte Carlo Methods in Statistical Physics (Springer Topics in Current Physics, Vol. 7) edited by K Binder (Springer, Berlin 1979) p. 225.

    Google Scholar 

  21. Early (and even some recent) KMC work can be found under various names, including “dynamic Monte Carlo,” “time-dependent Monte Carlo,” and simply “Monte Carlo.”

    Google Scholar 

  22. R. Norris, Markov Chains (Cambridge University Press, Cambridge, UK, 1997).

    MATH  Google Scholar 

  23. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley, New York (1966).

    Google Scholar 

  24. D.T. Gillespie, J. Comp. Phys. 22, 403 (1976).

    Article  CAS  MathSciNet  Google Scholar 

  25. K.A. Fichthorn and W.H. Weinberg, J. Chem. Phys. 95, 1090 (1991).

    Article  ADS  CAS  Google Scholar 

  26. R. Marcelin, Ann. Physique 3, 120 (1915).

    CAS  Google Scholar 

  27. E. Wigner, Z. Phys. Chem. B 19 203 (1932).

    Google Scholar 

  28. H. Eyring, J. Chem. Phys. 3, 107 (1935).

    Article  CAS  Google Scholar 

  29. A.F. Voter and J.D. Doll, J. Chem. Phys. 80, 5832 (1984).

    Article  ADS  CAS  Google Scholar 

  30. A.F. Voter, J. Chem. Phys. 82, 1890 (1985).

    Article  ADS  CAS  Google Scholar 

  31. J.C. Keck, Discuss. Faraday Soc. 33, 173 (1962).

    Article  Google Scholar 

  32. C.H. Bennett, in Algorithms for Chemical Computation, edited by R.E. Christofferson (American Chemical Society, Washington, DC, 1977), p. 63.

    Chapter  Google Scholar 

  33. D. Chandler, J. Chem. Phys. 68, 2959 (1978).

    Article  ADS  CAS  Google Scholar 

  34. A.F. Voter and J.D. Doll, J. Chem. Phys. 82, 80 (1985).

    Article  ADS  CAS  Google Scholar 

  35. G.H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  CAS  Google Scholar 

  36. P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  37. For a three-dimensional periodic system with all atoms moving, discarding the translational modes leaves 3N -3 and 3N -4 real normal mode frequencies at the minimum and saddle, respectively. For a system that is free to rotate, there are 3N-6 and 3N-7 relevant modes.

    Google Scholar 

  38. G. DeLorenzi, C.P. Flynn, and G. Jacucci, Phys. Rev. B 30, 5430 (1984).

    Article  ADS  CAS  Google Scholar 

  39. M.R. Sørensen and A.F. Voter, J. Chem. Phys. 112, 9599 (2000).

    Article  ADS  Google Scholar 

  40. G. Boisvert and L.J. Lewis, Phys. Rev. B 54, 2880 (1996).

    Article  ADS  CAS  Google Scholar 

  41. F. Montalenti and A.F. Voter, Phys. Stat. Sol. (b) 226, 21 (2001).

    Article  ADS  CAS  Google Scholar 

  42. An additional T dependence is introduced if the quasiharmonic method is employed to give a different lattice constant (and hence different barrier height and preexponential) at each temperature,but here we are assuming a fixed lattice constant.

    Google Scholar 

  43. H. Jónsson, G. Mills, and K.W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti and D.F. Coker (World Scientific, 1998), chapter 16.

    Google Scholar 

  44. G. Henkelman, B.P. Uberuaga, and H. J ónsson, J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  CAS  Google Scholar 

  45. A.F. Voter, in Modeling of Optical Thin Films,M.R. Jacobson, Ed., Proc. SPIE 821, 214 (1987).

    Google Scholar 

  46. H. Mehl, O. Biham, K. Furman, and M. Karimi, Phys. Rev. B 60, 2106 (1999).

    Article  ADS  CAS  Google Scholar 

  47. P.A. Maksym, Semicond. Sci. Technol. 3, 594 (1988).

    Article  ADS  CAS  Google Scholar 

  48. J.L. Blue, I. Beichl and F. Sullivan, Phys. Rev. E 51, R867, (1994).

    Article  ADS  Google Scholar 

  49. T.P. Schulze, Phys. Rev. E 65, 036704 (2002).

    Article  ADS  CAS  Google Scholar 

  50. In fact, the number of saddle points accessible to a state may scale more strongly than linear in N if complicated, high-barrier mechanisms are considered, but in almost all KMC implementations it will be proportional to N.

    Google Scholar 

  51. P.J. Feibelman, Phys. Rev. Lett. 65, 729 (1990).

    Article  PubMed  ADS  CAS  Google Scholar 

  52. G.L. Kellogg and P.J. Feibelman, Phys. Rev. Lett. 64, 3143 (1990).

    Article  PubMed  ADS  CAS  Google Scholar 

  53. C. Chen and T.T. Tsong, Phys. Rev. Lett. 64, 3147 (1990).

    Article  PubMed  ADS  CAS  Google Scholar 

  54. C.L. Liu and J.B. Adams, Surf. Sci. 268, 73 (1992).

    Article  CAS  Google Scholar 

  55. R. Wang and K.A. Fichthorn, Molec. Sim. 11, 105 (1993).

    Article  CAS  Google Scholar 

  56. J.C. Hamilton, M.S. Daw, and S.M. Foiles, Phys. Rev. Lett. 74, 2760 (1995).

    Article  PubMed  ADS  CAS  Google Scholar 

  57. G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999).

    Article  ADS  CAS  Google Scholar 

  58. B.P. Uberuaga, R. Smith, A.R. Cleave, F. Montalenti, G. Henkelman, R.W. Grimes, A.F. Voter, and K.E. Sickafus, Phys. Rev. Lett. 92, 115505 (2004).

    Article  PubMed  ADS  CAS  Google Scholar 

  59. A.F. Voter, F. Montalenti and T.C. Germann, Annu. Rev. Mater. Res., 32, 321 (2002).

    Article  CAS  Google Scholar 

  60. A. Samant and D.G. Vlachos, J. Chem. Phys. 123, 144114 (2005).

    Article  PubMed  CAS  Google Scholar 

  61. D.R. Mason, T.S. Hudson, and A.P. Sutton, Comp. Phys. Comm. 165, 37 (2005).

    Article  ADS  CAS  Google Scholar 

  62. A.L. Zobrist, Technical report 88, Computer Science Department, University of Wisconsin, Madison, 1970; Reprinted in: ICCA J. 13, 69 (1990).

    Google Scholar 

  63. M.A. Novotny, Phys. Rev. Lett. 74, 1 (1994); Erratum 75, 1424 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  64. D.G. Vlachos, Adv. Chem. Eng. 30, 1 (2005).

    Article  CAS  Google Scholar 

  65. C. Domain, C.S. Becquart, and L. Malerba, J. Nucl. Mater. 335, 121 (2004).

    Article  ADS  CAS  Google Scholar 

  66. S. Liu, Z. Zhang, J. Norskov, and H. Metiu, Surf. Sci. 321, 161 (1994).

    Article  CAS  Google Scholar 

  67. Z -P Shi, Z. Zhang, A.K. Swan, and J.F. Wendelken, Phys. Rev. Lett. 76, 4927 (1996).

    Article  PubMed  ADS  CAS  Google Scholar 

  68. G. Henkelman and H. Jónsson, J. Chem. Phys. 115, 9657 (2001).

    Article  ADS  CAS  Google Scholar 

  69. A.F. Voter, Phys. Rev. Lett. 78, 3908 (1997).

    Article  ADS  CAS  Google Scholar 

  70. G. Henkelman and H. Jonsson, Phys. Rev. Lett. 90, 116101–1 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Voter, A.F. (2007). INTRODUCTION TO THE KINETIC MONTE CARLO METHOD. In: Sickafus, K.E., Kotomin, E.A., Uberuaga, B.P. (eds) Radiation Effects in Solids. NATO Science Series, vol 235. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5295-8_1

Download citation

Publish with us

Policies and ethics