Skip to main content

Representational Resources for Constructing Shared Understandings in the High School Chemistry Classroom

  • Chapter
Visualization: Theory and Practice in Science Education

Part of the book series: Models and Modeling in Science Education ((MMSE,volume 3))

Abstract

This chapter reports on the use of representational resources within a computer-based environment, called ChemSense, to support high school chemistry students’ representational practices and their understanding of key chemical concepts. In designing ChemSense, we hypothesized that it would provide students with symbolic resources they could use to jointly construct representations of observable physical phenomena and to explain these phenomena in terms of underlying chemical entities and processes. This study examines the role that these representational resources play in supporting students’ representational practices and their emerging chemical understanding. To elucidate how ChemSense supports the development of representational practice and chemical understanding, we provide an analysis of students’ conversation while they use ChemSense in the laboratory. Our findings indicate that students use ChemSense to construct their shared understanding of chemical phenomena in a common representational space. Their representations serve as key symbolic resources in students’ collaborative efforts to generate coherent explanations of the phenomena they are investigating. On the basis of our analysis we conclude that when using representational resources as part of collaborative investigations, the nature of students’ conversation becomes more “chemical” and students deepen their understanding of the molecular nature of physical phenomena that have, as a result, become chemical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press.

    Google Scholar 

  • American Chemical Society. (2001). General chemistry (conceptual) 2001. Washington, DC: American Chemical Society.

    Google Scholar 

  • Amman, K., & Knorr Cetina, K. (1990). The fixation of (visual) evidence. In M. Lynch & S. Woolgar (Eds.), Representation in scientific practice (pp. 85–122). Cambridge, MA: MIT Press.

    Google Scholar 

  • Barron, B. (2003). When smart groups fail. The Journal of the Learning Sciences, 12(3), 307–359.

    Google Scholar 

  • Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning. International Journal of Science Education, 22(8), 797–817.

    Article  Google Scholar 

  • Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141–178.

    Google Scholar 

  • Brown, A. L., & Campione, J. C. (1996). Guided discovery in a community of learners. In K. McGilly (Ed.), Classroom Lessons: Integrating cognitive theory and classroom practice. Cambridge: MIT Press/Bradford Books.

    Google Scholar 

  • Bunce, D., & Gabel, D. (2002). Differential effects on the achievement of males and females of teaching the particulate nature of chemistry. Journal of Research in Science Teaching, 39(10), 911–927.

    Article  Google Scholar 

  • Chi, M., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

    Google Scholar 

  • Clark, H. H. (1996). Using language. New York: Cambridge University Press.

    Google Scholar 

  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in education research. Educational Researcher, 32(1), 9–13.

    Article  Google Scholar 

  • Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. The Journal of the Learning Sciences, 13(1), 15–42.

    Article  Google Scholar 

  • Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8.

    Google Scholar 

  • diSessa, A. A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing graphing: Meta-representational expertise in children. Journal of Mathematical Behavior, 10, 117–160.

    Google Scholar 

  • Dori, Y. J., Barak, M., & Adir, N. (2003) A Web-based chemistry course as a means to foster freshmen learning. Journal of Chemical Education, 80(9), 1084–1092.

    Article  Google Scholar 

  • Dunbar, K. (1997). How scientists really reason: Scientific reasoning in real-world laboratories. In R. Sternberg & J. Davidson (Eds.), The nature of insight (pp. 365–396). Cambridge, MA: MIT Press.

    Google Scholar 

  • Gabel, D. (1998). The complexity of chemistry and implications for teaching. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 233–249). Great Britain: Klewer Academic Press.

    Google Scholar 

  • Goodwin, C. (1995). Seeing in depth. Social Studies of Science, 25, 237–274.

    Article  Google Scholar 

  • Greeno, J. G. (1998). The situativity of knowing, learning, and research. American Psychologist, 53(1), 5–26.

    Article  Google Scholar 

  • Greeno, J. G., & Hall, R. P. (1997). Practicing representation: Learning with and about representational forms. Phi Delta Kappan, 78, 361–367.

    Google Scholar 

  • Hanks, W. F. (1999). Intertexts: Writings on language, utterance and context. Denver: Rowman & Littlefield.

    Google Scholar 

  • Hinton, M. E., & Nakhleh, M. B. (1999). Students’ microscopic, macroscopic, and symbolic representations of chemical reactions. The Chemical Educator, 4(5), 1–29.

    Article  Google Scholar 

  • Hoffmann, R., & Laszlo, R. (1991). Representation in chemistry. Angewandte Chemie, 30, 1–16.

    Article  Google Scholar 

  • Kozma, R. (2000a). Representation and language: The case for representational competence in the chemistry curriculum.Paper presented at the 16th Biennial Conference on Chemical Education, Ann Arbor, MI.

    Google Scholar 

  • Kozma, R. (2000b). Students collaborating with computer models and physical experiments. In J. Roschelle & C. Hoadley (Eds.), Proceedings of the Conference on Computer-Supported Collaborative Learning 1999.Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Kozma, R. (2000c). The use of multiple representations and the social construction of understanding in chemistry. In M. Jacobson & R. Kozma (Eds.), Innovations in science and mathematics education: Advanced designs for technologies of learning (pp. 11–45). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Kozma, R. B., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry instruction. The Journal of the Learning Sciences, 9(2), 105–143.

    Article  Google Scholar 

  • Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968.

    Article  Google Scholar 

  • Krajcik, J. S. (1991). Developing students’ understandings of chemical concepts. In S. H. Glynn, R. H. Yeany, & B. K. Britton (Eds.), The psychology of learning science. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Krajcik, J., Blumenfeld, P., Marx, R., Bass, K., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3&4), 313–351.

    Article  Google Scholar 

  • Lemke, J. (1990). Talking science: Language, learning, and values. Norwood, NJ: Ablex.

    Google Scholar 

  • Linn, M., Bell, P., & Hsi, S. (1998). Using the Internet to enhance student understanding of science: The Knowledge Integration Environment. Interactive Learning Environments, 6(1–2), 4–38.

    Article  Google Scholar 

  • Nakhleh, M. B. (2002). Some thoughts about molecular-level representations in conceptual problem solving. Presented at Problem Solving in Chemistry: An Online CONFCHEM Conference on Chemistry. Available at http://www.chem.vt.edu/confchem/2002/b/nakhleh.html.

    Google Scholar 

  • Nakhleh, M. B., Lowrey, K. A., & Mitchell, R. C. (1996). Narrowing the gap between concepts and algorithms in freshman chemistry. Journal of Chemical Education, 73(8), 758–762.

    Google Scholar 

  • Council. (1996). From analysis to action: Undergraduate education in science, mathematics, engineering, and technology. Washington, DC: National Academy Press.

    Google Scholar 

  • Pea, R. D. (1992). Augmenting the discourse of learning with computer-based learning environments. In E. de Corte, M. Linn, & L. Verschaffel (Eds.), Computer-based learning environments and problem-solving (NATO Series, subseries F: Computer and System Sciences) (pp. 313–343). New York: Springer-Verlag.

    Google Scholar 

  • Pea, R. D. (1994). Seeing what we build together: Distributed multimedia learning environments for transformative communications. The Journal of the Learning Sciences, 3(3), 283–298.

    Article  Google Scholar 

  • Roth, W.-M. (2004). What is the meaning of meaning? A case study from graphing. Journal of Mathematical Behavior.

    Google Scholar 

  • Roth, W.-M. (2001). Situating cognition. The Journal of the Learning Sciences, 10(1&2), 27–61.

    Article  Google Scholar 

  • Roth, W.-M. (1998). Teaching and learning as everyday activity. In B. Fraser & K. Tobin (Eds.), International handbook of science education (pp. 169–181). Dordrecht: Kluwer.

    Google Scholar 

  • Roth, W.-M. (1995). Affordances of computers in teacher-student interactions: The case of interactive physics. Journal of Research in Science Teaching, 32, 329–347.

    Article  Google Scholar 

  • Roth, W.-M., & Bowen, G. M. (1999). Of cannibals, missionaries, and converts: Graphing competencies from grade 8 to professional science inside (classrooms) and outside (field/laboratory). Science, Technology, and Human Values, 24(2), 179–212.

    Article  Google Scholar 

  • Scardamalia, M., & Bereiter, C. (1994). Computer support for knowledge-building communities. The Journal of the Learning Sciences, 3(3), 265–283.

    Article  Google Scholar 

  • Schank, P., & Kozma, R. (2002). Learning chemistry through the use of a representation-based knowledge-building environment. Journal of Computers in Mathematics and Science Teaching, 21(3), 253–279.

    Google Scholar 

  • Schegloff, E. (1992). Repair after next turn: The last structurally provided defense of intersubjectivity in conversation. American Journal of Sociology, 97(5), 1295–1345.

    Article  Google Scholar 

  • Shavelson, R. J., Phillips, D. C., Towne, L., & Feuer, M. J. (2003). On the science of education design studies. Educational Researcher, 32(1), 25–28.

    Google Scholar 

  • Stevens, R., & Hall, R. (1998). Disciplined perception: Learning to see in technoscience. In M. Lampert & M. L. Blunk (Eds.), Talking mathematics in school: Studies of teaching and learning. New York: Cambridge University Press.

    Google Scholar 

  • Woolgar, S. (1990). Time and documents in researcher interaction: Some ways of making out what is happening in experimental science. In M. Lynch & S. Woolgar (Eds.), Representation in scientific practice(pp. 123–152). Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Michalchik, V., Rosenquist, A., Kozma, R., Kreikemeier, P., Schank, P. (2008). Representational Resources for Constructing Shared Understandings in the High School Chemistry Classroom. In: Gilbert, J.K., Reiner, M., Nakhleh, M. (eds) Visualization: Theory and Practice in Science Education. Models and Modeling in Science Education, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5267-5_11

Download citation

Publish with us

Policies and ethics