Advertisement

The Role of Phenols in Plant Defense

  • Wilfred Vermerris
  • Ralph Nicholson

Keywords

Chlorogenic Acid Tobacco Mosaic Virus Stem Rust Plant Pathol Cinnamyl Alcohol Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adewusi, S. R. A., 1990, Turnover of dhurrin in green sorghum seedlings, Plant Physiol. 94:1219-1224.PubMedGoogle Scholar
  2. Aguero, M. E., Gevens, A., and Nicholson, R.L., 2002, Interaction of Cochliobolus heterostrophus with phytoalexin inclusions in Sorghum bicolor. Physiol. Mol. Plant Pathol. 61:267-271.CrossRefGoogle Scholar
  3. Anderson, E. G., 1921, The inheritance of salmon silk color in maize, Cornell Univ. Agric. Exp. Stn. Memoir 48:535–554.Google Scholar
  4. Breuil A.-C., Adrian M., Pirio N., Meunier P., Bessis R., and Jeandet P., 1998, Metabolism of stilbene phytoalexins by Botrytis cinerea: 1. Characterization of a resveratrol dehydrodimer, Tetrahed. Lett. 39: 537- 540.CrossRefGoogle Scholar
  5. Byrne, P. F., McMullen, M. D., Snook, M. E., Musket, T. A., J. Theuri, M., Widstrom, N. W., Wiseman, B. R., and Coe, E. H., 1996, Quantitative trait loci and metabolic pathways: Genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks, Proc. Natl. Acad. Sci. USA 17: 8820-8825.CrossRefGoogle Scholar
  6. Cadenagomez, G, and Nicholson, R. L., 1987, Papilla formation and associated peroxidase-activity – a nonspecific response to attempted fungal penetration of maize, Phys. Mol. Plant Pathol. 31: 51-67.CrossRefGoogle Scholar
  7. Chen, C.-L., and Chang, H.-M., 1985, Chemistry of lignin biodegradation, in: Biosynthesis and Biodegradation of Wood Components, T. Higuchi, ed., Academic Press, Orlando, FL, pp. 535-556.Google Scholar
  8. Cortés-Cruz, M., Snook, M., and McMullen, M. D., 2003, The genetic basis of C-glycosyl flavone B-ring modification in maize (Zea mays L.) silks, Genome 46: 182-194.PubMedCrossRefGoogle Scholar
  9. Dao, L., and Friedman, M., 1994, Chlorophyll, chlorogenic acid, glycoalkaloid, and protease inhibitor content of fresh and green potatoes, J. Agric. Food Chem. 42: 633-639.CrossRefGoogle Scholar
  10. Deborah, S. D., Palaniswami, A., Vidhyasekaran, P., and Velazhahan, R., 2001, Time-course study of the induction of defense enzymes, phenolics and lignin in rice in response to infection by pathogen and non-pathogen, J. Plant Dis. Protect. 108: 204-216.Google Scholar
  11. Delserone, L. M., McCluskey, K., Matthews, D. E., and VanEtten, H. D., 1999, Pisatin demethylation by fungal pathogens and nonpathogens of pea: association with pisatin tolerance and virulence, Physiol. Mol. Plant Pathol. 55: 317-326.CrossRefGoogle Scholar
  12. Denton, F.R., 1998, Beetle juice, Science 281: 1285.PubMedCrossRefGoogle Scholar
  13. Elliger, C. A., Chan, B. G., Waiss, A. C. Jr., 1980, Flavonoids as larval growth inhibitors, Phytochem. 19: 293-297.CrossRefGoogle Scholar
  14. Essenberg, M., Pierce, M., Shevell, J. L., Sun, T. J. and Richardson, P. E., 1985, Sesquiterpenoid phytoalexins and resistance of cotton to Xanthomonas campestris pv. Malvacearum, Curr. Comm. Mol. Biol. 152: 145-149.Google Scholar
  15. Felton, G. W., Donata, K., Del Vecchio, R. J., Duffey, S. S., 1989, Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores, J. Chem. Ecol. 15: 2667-2694.CrossRefGoogle Scholar
  16. Gaffney, T., Friedrich, L., Vernooij, B., Negmtto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J., 1993, Requirement of salicylic acid for the induction of systemic acquired resistance, Science 261: 754- 756.PubMedCrossRefGoogle Scholar
  17. Hammerschmidt, R., 1999, Phytoalexins: What have we learned after 60 years?, Annu. Rev. Phytopathol. 37: 285-306.PubMedCrossRefGoogle Scholar
  18. Hammerschmidt, R., and Nicholson, R. L., 2001, A survey of plant defense responses to pathogens, in: Inducible plant defenses against pathogens and herbivores: Biochemistry, ecology, and agriculture. Am. Phytopathol. Soc., St. Paul, MN, pp 57-71.Google Scholar
  19. Kang, Z., and Buchenauer, H., 2000, Ultrastructural and immunochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum, Physiol. Mol. Plant Pathol. 57: 255-268.CrossRefGoogle Scholar
  20. Kojima, M., and Kondo, T., 1985, An enzyme in sweet potato root which catalyzes the conversion of chlorogenic acid, 3-caffeoylquinic acid, to isochlorogenic acid, 3,5-dicaffeoylquinic acid, Agric. Biol. Chem. 49:2467-2469.Google Scholar
  21. Lee, E. A., Byrne, P. F., McMullen, M. D., Snook, M. E., Wiseman, B. R., Widstrom, N. W., and Coe, E. H., 1998, Genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.), Genetics 149: 1997-2006.PubMedGoogle Scholar
  22. Leser, C., and Treutter, D., 2005, Effects of nitrogen supply on growth, contents of phenolic compounds, and pathogen (scab) resistance of apple trees, Physiol. Plant. 123: 49-56.CrossRefGoogle Scholar
  23. Lauvergeat, V., Lacomme, C., Lacombe, E., Lasserre, E., Roby, D., and Grima-Pettenati, J., 2001, Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria, Phytochem. 57: 1187-1195.CrossRefGoogle Scholar
  24. Lo, C., Coolbaugh, R. C., and Nicholson, R. L., 2002, Molecular characterization and in silico expression analysis of a chalcone synthase gene family in Sorghum bicolor, Physiol. Mol. Plant Pathol. 61: 179- 188.CrossRefGoogle Scholar
  25. Lo, S.-C. C., Hipskind, J. D., and Nicholson, R. L., 1999, cDNA cloning of a sorghum pathogenesis-related rotein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum, Mol. Plant Microb. Inter. 12: 479–489.CrossRefGoogle Scholar
  26. Lo, S. C. C., and Nicholson, R. L., 1998, Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls: Implications for a compensatory role in the defense response. Plant Physiol. 116: 979-989.PubMedCrossRefGoogle Scholar
  27. Matheis, G., and Whitaker, J. R., 1984, Modification of proteins by polyphenol oxidase and peroxidase and their products, J. Food Biochem. 8: 137-162.CrossRefGoogle Scholar
  28. McMullen, M. D., Kross, H., Snook, M. E., Cortés-Cruz, M., Houchins, K. E., Musket, T. A., and Coe, E. H., Jr, 2004, Salmon silk genes contribute to the elucidation of the flavone pathway in maize (Zea mays L.), J. Hered. 95: 225-233.PubMedCrossRefGoogle Scholar
  29. Mitchell, H.J., Hall, J.L., and Barber, M.S., 1994, Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum L.) leaves, Plant Physiol. 104: 551-556.PubMedGoogle Scholar
  30. Mitchell, H.J., Hall, S.A., Stratford, R., Hall, J.L., and Barber, M.S. 1999. Differential induction of cinnamyl alcohol dehydrogenase during defensive lignification in wheat (Triticum aestivum L.): characterization of the major inducible form, Planta 208: 31-37.CrossRefGoogle Scholar
  31. Moerschbacher, B.M., Noll, U.M., Flott, B.E., and Reisener, H.J., 1988, Lignin biosynthetic enzymes in stem rust infected resistance and susceptible near-isogenic wheat lines, Physiol. Mol. Plant Pathol. 33: 33- 46.CrossRefGoogle Scholar
  32. Moerschbacher, B.M., Noll, U.M., Gorrichon, L., and Reisener, H.J., 1990, Specific inhibition of lignification breaks hypersensitive resistance of wheat to stem rust, Plant Physiol. 93:465-470.PubMedGoogle Scholar
  33. Morales, M, Alcántara, J., and Barceló, A. R. (1997) Oxidation of transresveratrol by a hypodermal peroxidase isoenzyme from Gama rouge grape (Vitis vinifera) berries, Am. J. Enol. Vitic. 48: 33-38.Google Scholar
  34. Nicholson, R. L., and Rahe, J. E., 2004, Apple scab and its management, in: Fruit and vegetable diseases Mukerji., K. G., ed., Kluwer Academic Publishers, Dordrecht, pp. 41-58.CrossRefGoogle Scholar
  35. Nicholson, R. L., and Wood, K. V., 2001, Phytoalexins and secondary products, where are they and how can we measure them?, Physiol. Mol. Plant Pathol. 59: 63-69.CrossRefGoogle Scholar
  36. Nielsen, K. A., Gottfredsen, C. H., Buch-Pedersen, M. J., Ammitzbøll, H., Mattsson, O., Duus, J. Ø., and Nicholson, R. L., 2004, Anti-microbial flavonoid 3-deoxyanthocyanidins in Sorghum bicolor self-organize into spherical structures, Phys. Mol. Plant Pathol. 65: 187-196.CrossRefGoogle Scholar
  37. Pichon, L. Courbou, I, Beckert, M, Boudet, A-M., and Grima-Pettenati, J., 1998, Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes, Plant Mol. Biol. 38: 671-676.PubMedCrossRefGoogle Scholar
  38. Preisig, C. L., Matthews, D. E., VanEtten, H. D.,1989, Purification and characterization of S-adenosyl-L-methionine: 6a-hydroxymaackiain 3-Omethyltransferase from Pisum sativum, Plant Physiol. 91: 559-566.PubMedCrossRefGoogle Scholar
  39. Raa, J., 1968, Polyphenols and natural resistance of apple leaves against Venturia inaequalis, Eur. J. Plant Path. 74: 37-45.Google Scholar
  40. Raes, J., Rohde, A., Christensen, J. H., Van de Peer, Y., and Boerjan, W., 2003, Genome-wide characterization of the lignification toolbox in Arabidopsis, Plant Physiol. 133: 1051-1071.PubMedCrossRefGoogle Scholar
  41. Schönbeck, F., and Schroeder, C., 1972, Role of antimicrobial substances (tuliposiodes) in tulips attacked by Botrytis spp., Physiol. Plant Pathol. 2: 91-99.CrossRefGoogle Scholar
  42. Snook, M. E., Widstrom, N. W., Wiseman, B. R., Gueldner, R. C., Wilson, R. L., Himmelsbach, D. S., Harwood, J. S., Costello, C. E., 1994, New flavone C-glycosides from corn (Zea mays L.) for the control of the corn earworm (Helicoverpa zea), in: Bio-Regulators For Crop Protection And Pest Control, P. A. Hedin, ed., Symposium Series 557 of the American Chemical Society, Washington, DC, pp. 122-135.Google Scholar
  43. Snyder, B. A. and Nicholson, R. L., 1990, Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress, Science 248: 1637- 1639.PubMedCrossRefGoogle Scholar
  44. Southerton, S. G., and Deverall, B. J., 1990, Histochemical and chemical evidence for lignin accumulation during expression of resistance to leaf rust fungi in wheat. Physiol. Mol. Plant Pathol. 36: 483-494.CrossRefGoogle Scholar
  45. Starr, J.L., Newton, R. J., and Miller, F.R., 1984, Presence of dhurrin in sorghum root tissue and the effect of pathogenesis on hydrogen cyanide potential, Crop Sci. 24: 739-742.CrossRefGoogle Scholar
  46. Southerton, S. G., and Deverall, B. J., 1990, Histochemical and chemical evidence for lignin accumulation during expression of resistance to leaf rust fungi in wheat, Physiol. Mol. Plant Pathol. 36: 483-494.CrossRefGoogle Scholar
  47. Uknes, S., Winter, A., Delaney, T., Vernooij, B., Morse, A., Friedrich, L., Nye, G., Potter, S., Ward, E., and Ryals, J., 1993, Biological induction of systemic acquired resistance in Arabidopsis, Mol. Plant-Microbe Interact. 6: 692-698.Google Scholar
  48. Vance C.P, Kirk T.K. and Sherwood R.T., 1980, Lignification as a mechanism of disease resistance, Annu. Rev. Phytopath. 18: 259-288.CrossRefGoogle Scholar
  49. Van Bel, A. J. E., and Gaupels, F., 2004, Pathogen-induced resistance and alarm signals in the phloem, Mol. Plant Pathol. 5:495-504.CrossRefGoogle Scholar
  50. VanEtten, H.D., Mansfield, J.W., Bailey, J.A., and Farmer, E., 1994, Two classes of plant antibiotics: Phytoalexins versus “phytoanticipins”, Plant Cell 6: 1191-1192.PubMedCrossRefGoogle Scholar
  51. Van Loon, L.C., and Van Strien, E.A., 1999, The families of pathogenesisrelated proteins, their activities, and comparative analysis of PR-1 type proteins, Physiol. Mol. Plant Pathol. 55: 85–97.CrossRefGoogle Scholar
  52. Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H., and Ryals, J. (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction, Plant Cell 6: 959-965.PubMedCrossRefGoogle Scholar
  53. Ward, E.R., Uknes, S.J., Williams, S.C., Dincher, S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P., Metraux, J.-P., and Ryals, J.A., 1991, Coordinate gene activity in response to agents that induce systemic acquired resistance, Plant Cell 3: 1085-1094.PubMedCrossRefGoogle Scholar
  54. Zhang, P., Wang, Y., Zhang, J., Maddock, S., Snook, M., and Peterson, T., 2003, A maize QTL for silk maysin levels contains duplicated Mybhomologous genes which jointly regulate flavone biosynthesis, Plant Mol. Biol. 52: 1-15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Wilfred Vermerris
    • 1
  • Ralph Nicholson
    • 2
  1. 1.Genetics Institute Cancer & Genetics Research ComplexUniversity of FloridaGainesvilleUSA
  2. 2.Purdue UniversityWest LafayetteUSA

Personalised recommendations