THE ACTIN CYTOSKELETON AND METASTASIS

  • Isaac Rabinovitz
  • Kaylene J. Simpson
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 9)

Abstract

Transformed cells require cell motility to invade adjacent and distant tissues. To move, cells need to operate a dynamic actin cytoskeleton to produce the necessary protrusions and forces that drive the cell forward. Several of the elements of the basic molecular machinery that assemble and operate the actin cytoskeleton have been identified and their function thoroughly characterized. Most of these elements are actin-binding proteins that can be controlled by a network of regulatory molecules that connects the actin cytoskeleton to higher cellular processes. In cancer cells the dynamics and regulation of the actin cytoskeleton may be corrupted at several levels. This review examines several aspects of the actin cytoskeleton that may be affected during transformation and tumor progression.

Keywords

Migration Lymphoma Tyrosine Leukemia Adenocarcinoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Stetler-Stevenson, W.G., Aznavoorian, S., and Liotta, L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annual Review of Cell Biology, 9: 541–573, 1993.PubMedCrossRefGoogle Scholar
  2. 2.
    Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., and Horwitz, A.R. Cell migration: integrating signals from front to back. Science, 302: 1704–1709, 2003.PubMedCrossRefGoogle Scholar
  3. 3.
    Yamaguchi, H., Wyckoff, J., and Condeelis, J. Cell migration in tumors. Curr Opin Cell Biol, 17: 559–564, 2005.PubMedCrossRefGoogle Scholar
  4. 4.
    Abercrombie, M., Heaysman, J.E., and Pegrum, S.M. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp Cell Res, 59: 393–398, 1970.PubMedCrossRefGoogle Scholar
  5. 5.
    Abercrombie, M., Heaysman, J.E., and Pegrum, S.M. The locomotion of fibroblasts in culture. II. “Ruffling”. Exp Cell Res, 60: 437–444, 1970.PubMedCrossRefGoogle Scholar
  6. 6.
    Lauffenburger, D.A. and Horwitz, A.F. Cell migration - a physically integrated molecular process. Cell, 84: 359–369, 1996.PubMedCrossRefGoogle Scholar
  7. 7.
    Borisy, G.G. and Svitkina, T.M. Actin machinery: pushing the envelope. Curr Opin Cell Biol, 12: 104–112, 2000.PubMedCrossRefGoogle Scholar
  8. 8.
    Pollard, T.D. and Borisy, G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112: 453–465, 2003.PubMedCrossRefGoogle Scholar
  9. 9.
    Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 69: 11–25, 1992.PubMedCrossRefGoogle Scholar
  10. 10.
    Harms, B.D., Bassi, G.M., Horwitz, A.R., and Lauffenburger, D.A. Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophys J, 88: 1479–1488, 2005.PubMedCrossRefGoogle Scholar
  11. 11.
    Verkhovsky, A.B., Svitkina, T.M., and Borisy, G.G. Self-polarization and directional motility of cytoplasm. Curr Biol, 9: 11–20, 1999.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, Y.L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J Cell Biol, 101: 597–602, 1985.PubMedCrossRefGoogle Scholar
  13. 13.
    Pollard, T.D., Blanchoin, L., and Mullins, R.D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct, 29: 545–576, 2000.PubMedCrossRefGoogle Scholar
  14. 14.
    Winder, S.J. and Ayscough, K.R. Actin-binding proteins. J Cell Sci, 118: 651–654, 2005.PubMedCrossRefGoogle Scholar
  15. 15.
    dos Remedios, C.G., Chhabra, D., Kekic, M., Dedova, I.V., Tsubakihara, M., Berry, D.A., and Nosworthy, N.J. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev, 83: 433–473, 2003.PubMedGoogle Scholar
  16. 16.
    Pollard, T.D. and Beltzner, C.C. Structure and function of the Arp2/3 complex. Curr Opin Struct Biol, 12: 768–774, 2002.PubMedCrossRefGoogle Scholar
  17. 17.
    Machesky, L.M. and Gould, K.L. The Arp2/3 complex: a multifunctional actin organizer. Curr Opin Cell Biol, 11:117–121, 1999.PubMedCrossRefGoogle Scholar
  18. 18.
    Weed, S.A. and Parsons, J.T. Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene, 20: 6418–6434, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Bryce, N.S., Clark, E.S., Leysath, J.L., Currie, J.D., Webb, D.J., and Weaver, A.M. Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr Biol, 15: 1276–1285, 2005.PubMedCrossRefGoogle Scholar
  20. 20.
    Stradal, T.E., Rottner, K., Disanza, A., Confalonieri, S., Innocenti, M., and Scita, G. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol, 14:303–311, 2004.PubMedCrossRefGoogle Scholar
  21. 21.
    Takenawa, T. and Miki, H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci, 114: 1801–1809, 2001.PubMedGoogle Scholar
  22. 22.
    Eden, S., Rohatgi, R., Podtelejnikov, A.V., Mann, M., and Kirschner, M.W. Mechanism of regulation of WAVE1-induced actin nucleation by Racl and Nck. Nature, 418: 790–793, 2002.PubMedCrossRefGoogle Scholar
  23. 23.
    Krause, M., Dent, E.W., Bear, J.E., Loureiro, J.J., and Gertler, F.B. Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol, 19: 541–564, 2003.PubMedCrossRefGoogle Scholar
  24. 24.
    Bear, J.E., Loureiro, J.J., Libova, I, Fassler, R., Wehland, J., and Gertler, F.B. Negative regulation of fibroblast motility by Ena/VASP proteins. Cell, 101: 717–728, 2000.PubMedCrossRefGoogle Scholar
  25. 25.
    Bear, J.E., Svitkina, T.M., Krause, M., Schafer, D.A., Loureiro, J.J., Strasser, G.A., Maly, I.V., Chaga, O.Y., Cooper, J.A., Borisy, G.G., and Gertler, F.B. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell, 109: 509–521, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Krause, M., Leslie, J.D., Stewart, M., Lafuente, E.M., Valderrama, F., Jagannathan, R., Strasser, G.A., Rubinson, D.A., Liu, H., Way, M., Yaffe, M.B., Boussiotis, V.A., and Gertler, F.B. Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev Cell, 7: 571–583, 2004.PubMedCrossRefGoogle Scholar
  27. 27.
    Alberts, A.S. Diaphanous-related Formin homology proteins. Curr Biol, 12: R796, 2002.PubMedCrossRefGoogle Scholar
  28. 28.
    Watanabe, N. and Higashida, C. Formins: processive cappers of growing actin filaments. Exp Cell Res, 301: 16–22, 2004.PubMedCrossRefGoogle Scholar
  29. 29.
    Alberts, A.S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J Biol Chem, 276: 2824–2830, 2001.PubMedCrossRefGoogle Scholar
  30. 30.
    Silacci, P. , Mazzolai, L., Gauci, C., Stergiopulos, N., Yin, H.L., and Hayoz, D. Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci, 61: 2614–2623, 2004.PubMedCrossRefGoogle Scholar
  31. 31.
    Bamburg, J.R. and Wiggan, O.P. ADF/cofilin and actin dynamics in disease. Trends Cell Biol, 12: 598–605, 2002.PubMedCrossRefGoogle Scholar
  32. 32.
    Gohla, A., Birkenfeld, J., and Bokoch, G.M. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol, 7: 21–29, 2005.PubMedCrossRefGoogle Scholar
  33. 33.
    Hall, A. Rho GTPases and the actin cytoskeleton. Science, 279: 509–514, 1998.PubMedCrossRefGoogle Scholar
  34. 34.
    Jaffe, A.B. and Hall, A. RHO GTPASES: Biochemistry and Biology. Annu Rev Cell Dev Biol, 21: 247–269, 2005.PubMedCrossRefGoogle Scholar
  35. 35.
    Fukata, M., Nakagawa, M., and Kaibuchi, K. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol, 15: 590–597, 2003.PubMedCrossRefGoogle Scholar
  36. 36.
    Etienne-Manneville, S. and Hall, A. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature, 421: 753–756, 2003.PubMedCrossRefGoogle Scholar
  37. 37.
    Etienne-Manneville, S. and Hall, A. Rho GTPases in cell biology. Nature, 420: 629–635, 2002.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee, J.S., Chang, M.I., Tseng, Y., and Wirtz, D. Cdc42 mediates nucleus movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical shear stress. Mol Biol Cell, 16:871–880, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    Rodriguez, O.C., Schaefer, A.W., Mandato, C.A., Forscher, P. , Bement, W.M., and Waterman-Storer, C.M. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol, 5: 599–609, 2003.PubMedCrossRefGoogle Scholar
  40. 40.
    Merlot, S. and Firtel, R.A. Leading the way: Directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J Cell Sci, 116: 3471–3478, 2003.PubMedCrossRefGoogle Scholar
  41. 41.
    Devreotes, P. and Janetopoulos, C. Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J Biol Chem, 278: 20445–20448, 2003.PubMedCrossRefGoogle Scholar
  42. 42.
    Li, Z., Hannigan, M., Mo, Z., Liu, B., Lu, W., Wu, Y., Smrcka, A.V., Wu, G., Li, L., Liu, M., Huang, C.K., and Wu, D. Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42. Cell, 114: 215–227, 2003.PubMedCrossRefGoogle Scholar
  43. 43.
    Welch, H.C., Coadwell, W.J., Stephens, L.R., and Hawkins, P. T. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett, 546: 93–97, 2003.PubMedCrossRefGoogle Scholar
  44. 44.
    Kiosses, W.B., Shattil, S.J., Pampori, N., and Schwartz, M.A. Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol, 3:316–320, 2001.PubMedCrossRefGoogle Scholar
  45. 45.
    Schwartz, M. Rho signalling at a glance. J Cell Sci, 117: 5457–5458, 2004.PubMedCrossRefGoogle Scholar
  46. 46.
    Burridge, K. and Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol, 12: 463–518, 1996.PubMedCrossRefGoogle Scholar
  47. 47.
    Chrzanowska-Wodnicka, M. and Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol, 133: 1403–1415, 1996.PubMedCrossRefGoogle Scholar
  48. 48.
    Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science, 273: 245–248, 1996.PubMedCrossRefGoogle Scholar
  49. 49.
    Kawano, Y., Fukata, Y., Oshiro, N., Amano, M., Nakamura, T., Ito, M., Matsumura, F., Inagaki, M., and Kaibuchi, K. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol, 147: 1023–1038, 1999.PubMedCrossRefGoogle Scholar
  50. 50.
    Kureishi, Y., Kobayashi, S., Amano, M., Kimura, K., Kanaide, H., Nakano, T., Kaibuchi, K., and Ito, M. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem, 272: 12257–12260, 1997.PubMedCrossRefGoogle Scholar
  51. 51.
    Amano, M., Chihara, K., Kimura, K., Fukata, Y., Nakamura, N., Matsuura, Y., and Kaibuchi, K. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science, 275: 1308–1311, 1997.PubMedCrossRefGoogle Scholar
  52. 52.
    Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M., and Narumiya, S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 389: 990–994, 1997.PubMedCrossRefGoogle Scholar
  53. 53.
    Riveline, D., Zamir, E., Balaban, N.Q., Schwarz, U.S., Ishizaki, T., Narumiya, S., Kam, Z., Geiger, B., and Bershadsky, A.D. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDial-dependent and ROCK-independent mechanism. J Cell Biol, 153: 1175–1186, 2001.PubMedCrossRefGoogle Scholar
  54. 54.
    Evers, E.E., Zondag, G.C., Malliri, A., Price, L.S., ten Klooster, J.P. , van der Kammen, R.A., and Collard, J.G. Rho family proteins in cell adhesion and cell migration. Eur J Cancer, 36: 1269–1274, 2000.PubMedCrossRefGoogle Scholar
  55. 55.
    Worthylake, R.A., Lemoine, S., Watson, J.M., and Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol, 154: 147–160, 2001.PubMedCrossRefGoogle Scholar
  56. 56.
    Strauli, P. and Weiss, L. Cell locomation and tumor penetration. Report on a workshop of the EORTC cell surface project group. Eur J Cancer, 13: 1–12, 1977.PubMedGoogle Scholar
  57. 57.
    Strauli, P. and Haemmerli, G. The role of cancer cell motility in invasion. Cancer Metastasis Rev, 3: 127–141, 1984.PubMedCrossRefGoogle Scholar
  58. 58.
    Trinkaus, J. Cells into Organs. Englewood Cliffs, NJ: Prentice Hall, Inc., 1984.Google Scholar
  59. 59.
    Wood, S. Pathogenesis of metastasis formation obsrved in vivo in the rabit ear chamber. Archives of Pathology, 66: 550, 1958.Google Scholar
  60. 60.
    Farina, K.L., Wyckoff, J.B., Rivera, J., Lee, H., Segall, J.E., Condeelis, J.S., and Jones, J.G. Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Res, 58: 2528–2532, 1998.PubMedGoogle Scholar
  61. 61.
    Condeelis, J.S., Wyckoff, J., and Segall, J.E. Imaging of cancer invasion and metastasis using green fluorescent protein. Eur J Cancer, 36: 1671–1680, 2000.PubMedCrossRefGoogle Scholar
  62. 62.
    Lackie, J.M. Cell movement and cell behaviour. London: Allen & Unwin, 1986.Google Scholar
  63. 63.
    Friedl, P. and Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer, 3: 362–374, 2003.PubMedCrossRefGoogle Scholar
  64. 64.
    Verschueren, H., De Baetselier, P. , and Bereiter-Hahn, J. Dynamic morphology of metastatic mouse T-lymphoma cells invading through monolayers of 10T1/2 cells. Cell Motil Cytoskeleton, 20: 203–214, 1991.PubMedCrossRefGoogle Scholar
  65. 65.
    Kolega, J. The movement of cell clusters in vitro: morphology and directionality. J Cell Sci, 49: 15–32, 1981.PubMedGoogle Scholar
  66. 66.
    Friedl, p. , Noble, P. B., Walton, P. A., Laird, D.W., Chauvin, P. J., Tabah, R.J., Black, M., and Zanker, K.S. Migration of coordinated cell clusters in mesenchymal and epithelial cancer expiants in vitro. Cancer Res, 55: 4557–4560, 1995.PubMedGoogle Scholar
  67. 67.
    Knox, J.D., Cress, A.E., Clark, V., Manriquez, L., Affinito, K.S., Dalkin, B.L., and Nagle, R.B. Differential expression of extracellular matrix molecules and the alpha 6-integrins in the normal and neoplastic prostate. Am J Pathol, 145: 167–174, 1994.PubMedGoogle Scholar
  68. 68.
    Vandekerckhove, J., Leavitt, J., Kakunaga, T., and Weber, K. Coexpression of a mutant beta-actin and the two normal beta-and gamma-cytoplasmic actins in a stably transformed human cell line. Cell, 22: 893–899, 1980.PubMedCrossRefGoogle Scholar
  69. 69.
    Sadano, H., Taniguchi, S., Kakunaga, T., and Baba, T. cDNA cloning and sequence of a new type of actin in mouse B16 melanoma. J Biol Chem, 263: 15868–15871, 1988.PubMedGoogle Scholar
  70. 70.
    Kaneda, A., Kaminishi, M., Sugimura, T., and Ushijima, T. Decreased expression of the seven ARP2/3 complex genes in human gastric cancers. Cancer Lett, 212: 203–210, 2004.PubMedCrossRefGoogle Scholar
  71. 71.
    Otsubo, T., Iwaya, K., Mukai, Y., Mizokami, Y., Serizawa, H., Matsuoka, T., and Mukai, K. Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Mod Pathol, 17: 461–467, 2004.PubMedCrossRefGoogle Scholar
  72. 72.
    Sossey-Alaoui, K., Ranalli, T.A., Li, X., Bakin, A.V., and Cowell, J.K. WAVE3 promotes cell motility and invasion through the regulation of MMP-1, MMP-3, and MMP-9 expression. Exp Cell Res, 308: 135–145, 2005.PubMedCrossRefGoogle Scholar
  73. 73.
    Kurisu, S., Suetsugu, S., Yamazaki, D., Yamaguchi, H., and Takenawa, T. Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells. Oncogene, 24: 1309–1319, 2005.PubMedCrossRefGoogle Scholar
  74. 74.
    Lorenz, M., Yamaguchi, H., Wang, Y., Singer, R.H., and Condeelis, J. Imaging sites of N-wasp activity in lamellipodia and invadopodia of carcinoma cells. Curr Biol, 14: 697–703, 2004.PubMedCrossRefGoogle Scholar
  75. 75.
    Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., Segall, J., Eddy, R., Miki, H., Takenawa, T., and Condeelis, J. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol, 168: 441–452, 2005.PubMedCrossRefGoogle Scholar
  76. 76.
    Yamaguchi, H., Miki, H., and Takenawa, T. Neural Wiskott-Aldrich syndrome protein is involved in hepatocyte growth factor-induced migration, invasion, and tubulogenesis of epithelial cells. Cancer Res, 62: 2503–2509, 2002.PubMedGoogle Scholar
  77. 77.
    Asch, H.L., Head, K., Dong, Y., Natoli, F., Winston, J.S., Connolly, J.L., and Asch, B.B. Widespread loss of gelsolin in breast cancers of humans, mice, and rats. Cancer Res, 56: 4841–4845, 1996.PubMedGoogle Scholar
  78. 78.
    Asch, H.L., Winston, J.S., Edge, S.B., Stomper, p. C., and Asch, B.B. Down-regulation of gelsolin expression in human breast ductal carcinoma in situ with and without invasion. Breast Cancer Res Treat, 55: 179–188, 1999.PubMedCrossRefGoogle Scholar
  79. 79.
    Fujita, H., Okada, F., Hamada, J., Hosokawa, M., Moriuchi, T., Koya, R.C., and Kuzumaki, N. Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. Int J Cancer, 93:773–780, 2001.PubMedCrossRefGoogle Scholar
  80. 80.
    Lee, H.K., Driscoll, D., Asch, H., Asch, B., and Zhang, P. J. Downregulated gelsolin expression in hyperplastic and neoplastic lesions of the prostate. Prostate, 40: 14–19, 1999.PubMedCrossRefGoogle Scholar
  81. 81.
    Tanaka, M., Sazawa, A., Shinohara, N., Kobayashi, Y., Fujioka, Y., Koyanagi, T., and Kuzumaki, N. Gelsolin gene therapy by retrovirus producer cells for human bladder cancer in nude mice. Cancer Gene Ther, 6: 482–487, 1999.PubMedCrossRefGoogle Scholar
  82. 82.
    Thor, A.D., Edgerton, S.M., Liu, S., Moore, D.H., 2nd, and Kwiatkowski, D.J. Gelsolin as a negative prognostic factor and effector of motility in erbB-2-positive epidermal growth factor receptor-positive breast cancers. Clin Cancer Res, 7: 2415–2424, 2001.PubMedGoogle Scholar
  83. 83.
    De Corte, V., Bruyneel, E., Boucherie, C., Mareel, M., Vandekerckhove, J., and Gettemans, J. Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling. Embo J, 21: 6781–6790, 2002.PubMedCrossRefGoogle Scholar
  84. 84.
    Zebda, N., Bernard, O., Bailly, M., Welti, S., Lawrence, D.S., and Condeelis, J.S. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J Cell Biol, 151: 1119–1128, 2000.PubMedCrossRefGoogle Scholar
  85. 85.
    Yap, C.T., Simpson, T.I., Pratt, T., Price, D.J., and Maciver, S.K. The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motil Cytoskeleton, 60: 153–165, 2005.PubMedCrossRefGoogle Scholar
  86. 86.
    Martoglio, A.M., Tom, B.D., Starkey, M., Corps, A.N., Charnock-Jones, D.S., and Smith, S.K. Changes in tumorigenesis- and angiogenesis-related gene transcript abundance profiles in ovarian cancer detected by tailored high density cDNA arrays. Mol Med, 6: 750–765, 2000.PubMedGoogle Scholar
  87. 87.
    Lee, S. and Helfman, D.M. Cytoplasmic p21Cipl is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem, 279: 1885–1891, 2004.PubMedCrossRefGoogle Scholar
  88. 88.
    Patel, AM., Incognito, L. S., Schechter, G. L., Wasilenko, W. J., and Somers, K. D. Amplification and expression of EMS-1 (cortactin) in head and neck squamous cell carcinoma cell lines. Oncogene, 12: 31–35, 1996.PubMedGoogle Scholar
  89. 89.
    Campbell, D. H., deFazio, A., Sutherland, R. L., and Daly, R. J. Expression and tyrosine phosphorylation of EMS1 in human breast cancer cell lines. Int J Cancer, 68: 485–492, 1996.PubMedCrossRefGoogle Scholar
  90. 90.
    Chuma, M., Sakamoto, M., Yasuda, J., Fujii, G., Nakanishi, K., Tsuchiya, A., Ohta, T., Asaka, M., and Hirohashi, S. Overexpression of cortactin is involved in motility and metastasis of hepatocellular carcinoma. J Hepatol, 41: 629–636, 2004.PubMedCrossRefGoogle Scholar
  91. 91.
    Bowden, E. T., Barth, M., Thomas, D., Glazer, R. I, and Mueller, S. C. An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene, 18: 4440–4449, 1999.PubMedCrossRefGoogle Scholar
  92. 92.
    Head, J. A., Jiang, D., Li, M., Zorn, L. J., Schaefer, E. M., Parsons, J. T., and Weed, S. A. Cortactin tyrosine phosphorylation requires Rac l activity and association with the cortical actin cytoskeleton. Mol Biol Cell, 14: 3216–3229, 2003.PubMedCrossRefGoogle Scholar
  93. 93.
    Timpson, P. , Lynch, D. K., Schramek, D., Walker, F., and Daly, R. J. Cortactin overexpression inhibits ligand-induced down-regulation of the epidermal growth factor receptor. Cancer Res, 65: 3273–3280, 2005.PubMedGoogle Scholar
  94. 94.
    Lee, Y.G., Macoska, J.A., Korenchuk, S., and Pienta, K.J. MIM, a potential metastasis suppressor gene in bladder cancer. Neoplasia, 4: 291–294, 2002.PubMedCrossRefGoogle Scholar
  95. 95.
    Lin, J., Liu, J., Wang, Y., Zhu, J., Zhou, K., Smith, N., and Zhan, X. Differential regulation of cortactin and N-WASP-mediated actin polymerization by missing in metastasis (MIM) protein. Oncogene, 24: 2059–2066, 2005.PubMedCrossRefGoogle Scholar
  96. 96.
    Woodings, J.A., Sharp, S.J., and Machesky, L.M. MIM-B, a putative metastasis suppressor protein, binds to actin and to protein tyrosine phosphatase delta. Biochem J, 371:463–471, 2003.PubMedCrossRefGoogle Scholar
  97. 97.
    Mattila, P. K., Salminen, M., Yamashiro, T., and Lappalainen, P. Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem, 278: 8452–8459, 2003.PubMedCrossRefGoogle Scholar
  98. 98.
    Sahai, E. and Marshall, C.J. RHO-GTPases and cancer. Nat Rev Cancer, 2: 133–142, 2002.PubMedCrossRefGoogle Scholar
  99. 99.
    Ridley, A.J. Rho proteins and cancer. Breast Cancer Res Treat, 84: 13–19, 2004.PubMedCrossRefGoogle Scholar
  100. 100.
    Wu, M., Wu, Z.F., Kumar-Sinha, C., Chinnaiyan, A., and Merajver, S.D. RhoC induces differential expression of genes involved in invasion and metastasis in MCF10A breast cells. Breast Cancer Res Treat, 84: 3–12, 2004.PubMedCrossRefGoogle Scholar
  101. 101.
    van Golen, K.L., Wu, Z.F., Qiao, X.T., Bao, L.W., and Merajver, S.D. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res, 60: 5832–5838, 2000.PubMedGoogle Scholar
  102. 102.
    Clark, E.A., Golub, T.R., Lander, E.S., and Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406: 532–535, 2000.PubMedCrossRefGoogle Scholar
  103. 103.
    Kleer, C.G., Zhang, Y., Pan, Q., Gallagher, G., Wu, M., Wu, Z.F., and Merajver, S.D. WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer. Breast Cancer Res, 6: R110–115, 2004.CrossRefGoogle Scholar
  104. 104.
    Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., Khokha, R., and Mak, T.W. RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev, 19: 1974–1979, 2005.PubMedCrossRefGoogle Scholar
  105. 105.
    Simpson, K.J., Dugan, A.S., and Mercurio, A.M. Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res, 64: 8694–8701, 2004.PubMedCrossRefGoogle Scholar
  106. 106.
    van Golen, K.L., Bao, L., DiVito, M.M., Wu, Z., Prendergast, G.C., and Merajver, S.D. Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol Cancer Ther, 1: 575–583, 2002.PubMedGoogle Scholar
  107. 107.
    Adini, I., Rabinovitz, L, Sun, J.F., Prendergast, G.C., and Benjamin, L.E. RhoB controls Akt trafficking and stage-specific survival of endothelial cells during vascular development. Genes Dev, 17: 2721–2732, 2003.PubMedCrossRefGoogle Scholar
  108. 108.
    Somlyo, A.V., Bradshaw, D., Ramos, S., Murphy, C., Myers, C.E., and Somlyo, A.p. Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem Biophys Res Commun, 269: 652–659, 2000.PubMedCrossRefGoogle Scholar
  109. 109.
    Jo, M., Thomas, K.S., Somlyo, A.V., Somlyo, A.P. , and Gonias, S.L. Cooperativity between the Ras-ERK and Rho-Rho kinase pathways in urokinase-type plasminogen activator-stimulated cell migration. J Biol Chem, 277: 12479–12485, 2002.PubMedCrossRefGoogle Scholar
  110. 110.
    Engers, R., Zwaka, T.P. , Gohr, L., Weber, A., Gerharz, C.D., and Gabbert, H.E. Tiaml mutations in human renal-cell carcinomas. Int J Cancer, 88: 369–376, 2000.PubMedCrossRefGoogle Scholar
  111. 111.
    Engers, R., Springer, E., Michiels, F., Collard, J.G., and Gabbert, H.E. Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 expression. J Biol Chem, 276: 41889–41897, 2001.PubMedCrossRefGoogle Scholar
  112. 112.
    Peck, J., Douglas, G.T., Wu, C.H., and Burbelo, P. D. Human RhoGAP domain-containing proteins: structure, function and evolutionary relationships. FEBS Lett, 528: 27–34, 2002.PubMedCrossRefGoogle Scholar
  113. 113.
    Wolf, R.M., Draghi, N., Liang, X., Dai, C., Uhrbom, L., Eklof, C., Westermark, B., Holland, E.C., and Resh, M.D. p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human chromosome 19ql3.3. Genes Dev, 17: 476–487, 2003.PubMedCrossRefGoogle Scholar
  114. 114.
    Wymann, M.P. and Marone, R. Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr Opin Cell Biol, 17: 141–149, 2005.PubMedCrossRefGoogle Scholar
  115. 115.
    Zhou, H. and Kramer, R.H. Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. J Biol Chem, 280: 10624–10635, 2005.PubMedCrossRefGoogle Scholar
  116. 116.
    Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D., Hammer, D.A., and Weaver, V.M. Tensional homeostasis and the malignant phenotype. Cancer Cell, 8: 241–254, 2005.PubMedCrossRefGoogle Scholar
  117. 117.
    Rabinovitz, I., Gipson, I.K., and Mercurio, A.M. Traction forces mediated by alpha6beta4 integrin: implications for basement membrane organization and tumor invasion. Molecular Biology of the Cell, 12: 4030–4043, 2001.PubMedGoogle Scholar
  118. 118.
    Mercurio, A.M. and Rabinovitz, I. Towards a mechanistic understanding of tumor invasion-lessons from the alpha6beta 4 integrin. [Review] [103 refs]. Seminars in Cancer Biology, 11: 129–141, 2001.PubMedCrossRefGoogle Scholar
  119. 119.
    Danen, E.H., van Rheenen, J., Franken, W., Huveneers, S., Sonneveld, P. , Jalink, K., and Sonnenberg, A. Integrins control motile strategy through a Rho-cofilin pathway. J Cell Biol, 169:515–526,2005.PubMedCrossRefGoogle Scholar
  120. 120.
    Chan, A.Y., Coniglio, S.J., Chuang, Y.Y., Michaelson, D., Knaus, U.G., Philips, M.R., and Symons, M. Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene, 2005.Google Scholar
  121. 121.
    O'Connor, K.L. and Mercurio, A.M. Protein kinase A regulates Rac and is required for the growth factor-stimulated migration of carcinoma cells. Journal of Biological Chemistry, 276: 47895–47900, 2001.PubMedCrossRefGoogle Scholar
  122. 122.
    O'Connor, K.L., Nguyen, B.K., and Mercurio, A.M. RhoA function in lamellae formation and migration is regulated by the alpha6beta4 integrin and cAMP metabolism. Journal of Cell Biology, 148: 253–258, 2000.PubMedCrossRefGoogle Scholar
  123. 123.
    Wei, Q. and Adelstein, R.S. Pitx2a expression alters actin-myosin cytoskeleton and migration of HeLa cells through Rho GTPase signaling. Mol Biol Cell, 13: 683–697, 2002.PubMedCrossRefGoogle Scholar
  124. 124.
    Wilkinson, S., Paterson, H.F., and Marshall, C.J. Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol, 7: 255–261, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Isaac Rabinovitz
    • 1
  • Kaylene J. Simpson
    • 2
  1. 1.Department of PathologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  2. 2.Department of Cell BiologyHarvard Medical SchoolBostonUSA

Personalised recommendations