Advertisement

Cranial growth models: heterochrony, heterotopy, and the kinematics of ontogeny

  • C. P. E. Zollikofer
  • M. S. Ponce De LeÓn
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

In fossil hominins, phyletic diversification – the process by which ancestral species give rise to descendant ones – can only be inferred through analysis of patterns of morphological diversity displayed in the fossil record. These patterns are interpreted typically in terms of selection/adaptation and related to environmental change. From an organism-centered perspective, evolutionary modification of developmental processes is an equally important source of phyletic diversity. Here, we use model systems to simulate cranial growth and to explore how mutations in the “genes” of an “ancestral” morphogenetic system may affect “descendant” ontogenies and “adult” morphologies. Intriguingly, a model that assumes basic epigenetic interactions between developmental processes is capable of producing a wide variety of patterns of developmental modification, many of which are not foreseen in classic heterochronic theory. Also, small changes in developmental “genes” often have complex effects on patterns of ontogeny. With regard to the evolutionary split between Neanderthals and modern humans, these model considerations shall be an incentive to look at taxon-specific character complexes from the perspective of developmental as opposed to functional constraints.

Keywords

Allometry computer simulations geometric morphometrics human evolution heterochrony heterotopy kinematics morphogenetic modeling ontogeny phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abzhanov, A., Tzahor, E., Lassar, A.B., Tabin, V., 2003. Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro. Development 130, 4567-4579.CrossRefGoogle Scholar
  2. Alberch, P., Gould, S.J., Oster, G.F., Wake, D.B., 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5, 296-317.Google Scholar
  3. Andresen, P.R., Bookstein, F.L., Conradsen, K., Ersboll, B.K., Marsh, J.L., Kreiborg, S., 2000. Surface-bounded growth modeling applied to human mandibles. IEEE Trans. Med. Imaging 19, 1053-1063.CrossRefGoogle Scholar
  4. Bookstein, F.L., 1989. “Size” and “shape”: a comment on semantics. Syst. Zool. 38, 173-180.CrossRefGoogle Scholar
  5. Bookstein, F.L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, Cambridge.Google Scholar
  6. Churchill, S.E., 1998. Cold adaptation, heterochrony, and Neandertals. Evol. Anthropol. 7, 46-61. CrossRefGoogle Scholar
  7. Coqueugniot, H., Hublin, J.J., Veillon, F., Houet, F., Jacob, T., 2004. Early brain growth in Homo erectus and implications for cognitive ability. Nature 431, 299-302.CrossRefGoogle Scholar
  8. Dryden, I.L., Mardia, K., 1998. Statistical Shape Analysis. John Wiley, New York.Google Scholar
  9. Godfrey, L.R., Sutherland, M.R., 1995. What’s growth got to do with it? Process and product in the evo-lution of ontogeny. J. Hum. Evol. 29, 405-431.CrossRefGoogle Scholar
  10. Godfrey, L.R., Sutherland, M.R., 1996. Paradox of per-amorphic paedomorphosis: heterochrony and human evolution. Am. J. Phys. Anthropol. 99, 17-42.CrossRefGoogle Scholar
  11. Godfrey, L.R., King, S.J., Sutherland, M.R., 1998. Heterochronic approaches to the study of loco-motion. In: Strasser, E., Fleagle, J.G., Rosenberger, A.L., McHenry, H. (Eds.), Primate Locomotion. Plenum Press, New York. pp. 277-307.CrossRefGoogle Scholar
  12. Gould, S.J., 1977. Ontogeny and Phylogeny. The Belknap Press of Harvard University Press, Cambridge, MA.Google Scholar
  13. Gould, S.J., 2000. Of coiled oysters and big brains: how to rescue the terminology of heterochrony, now gone astray. Evol. Dev. 2, 241-248.CrossRefGoogle Scholar
  14. Gould, S.J., Lewontin, R.C., 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205, 581-598.CrossRefGoogle Scholar
  15. Haeckel, E., 1866. Generale Morphologie der Organismen, Berlin.Google Scholar
  16. Huxley, J.S., 1924. Constant differential growth-ratios and their significance. Nature 114, 895-896.CrossRefGoogle Scholar
  17. Jolliffe, I.T., 1986. Principal Component Analysis. Springer, Berlin.CrossRefGoogle Scholar
  18. Jones, K.L., 1988. Smith’s Recognizable Patterns of Human Malformation, 4th Edition. W.B. Saunders, Philadelphia.Google Scholar
  19. Kauffman, S.A., 1993. The Origins of Order. Oxford University Press, Oxford.Google Scholar
  20. Kauffman, S., 2004. A proposal for using the ensemble approach to understand genetic regulatory net-works. J. Theor. Biol. 230, 581-590.CrossRefGoogle Scholar
  21. Kauffman, S., Peterson, C., Samuelsson, B., Troein, C., 2004. Genetic networks with canalyzing Boolean rules are always stable. Proc. Natl. Acad. Sci. U.S.A. 101, 17102-17107.CrossRefGoogle Scholar
  22. Klingenberg, C.P., 1998. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol. Rev. Camb. Phils. Soc. 73, 79-123.CrossRefGoogle Scholar
  23. Krovitz, G.E., 2000. Three-dimensional comparisons of craniofacial morphology and growth patterns in Neandertals and modern humans. Ph.D. Dissertation, Johns Hopkins University, Baltimore.Google Scholar
  24. Krovitz, G.E., 2003. Shape and growth differences between Neanderthals and modern humans: grounds for a species level distinction. In: Thompson, J., Krovitz, G., Nelson, A. (Eds.), Patterns of Growth and Development in the Genus Homo. Cambridge University Press, Cambridge, pp. 320-342.Google Scholar
  25. Lahr, M.M., Foley, R.A., 1998. Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Yrbk. Phys. Anthropol. 27, 137-176.CrossRefGoogle Scholar
  26. Lele, S., Richtsmeier, J., 2001. An Invariant Approach to the Statistical Analysis of Shapes. Chapman and Hall, Boca Raton, FL.CrossRefGoogle Scholar
  27. McKinney, M.L., 1999. Heterochrony: beyond words. Paleobiolgy 23, 149-153.Google Scholar
  28. McKinney, M.L., McNamara, K.J.,1991. Heterochrony: The Evolution of Ontogeny. Plenum Press, New York.CrossRefGoogle Scholar
  29. McNamara, K.J., 2002. Changing times, changing places:heterochronyand heterotopy. Paleobiology 28, 551-558.CrossRefGoogle Scholar
  30. Mosimann, J.E., 1988. Size and shape analysis. In: Kotz, L., Johnson, N.L. (Eds.), Encyclopedia of Statistical Sciences, Vol. 2. Holland, Dordrecht, pp. 219-239.Google Scholar
  31. Nehm, R.H., 2001. The developmental basis of mor-phologicaldisarmamentinPrunum (Neogastropoda: Marginellidae). In: Zelditch, M.L.(Ed.), Beyond Heterochrony: The Evolution of Development. Wiley-Liss, New York, pp. 1-26.Google Scholar
  32. Neilson, K.M., Friesel, R.E., 1995. Constitutive activa-tion of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syn-drome. J. Biol. Chem. 270, 26037-26040.CrossRefGoogle Scholar
  33. Ponce de León, M.S., Zollikofer, C.P.E., 2001. Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature 412, 534-538.CrossRefGoogle Scholar
  34. Raff, R.A., Wray, G.A., 1989. Heterochrony: developmental mechanisms and evolutionary results. J. Evol. Biol. 2, 409-434.CrossRefGoogle Scholar
  35. Ramirez Rozzi, F.V., Bermúdez de Castro, J.M., 2004. Surprisingly rapid growth in Neanderthals. Nature 428, 936-939.CrossRefGoogle Scholar
  36. Reardon, W., Winter, R.M., Rutland, P., Pulleyn, L.J., Jones, B.M., Malcolm, S., 1994. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat. Genet. 8, 98-103.CrossRefGoogle Scholar
  37. Rice, S.H., 1997. The analysis of ontogenetic trajecto-ries: When a change in size or shape is not heterochrony. Proc. Natl. Acad. Sci. U.S.A. 94, 907-912.CrossRefGoogle Scholar
  38. Rogers Ackermann, R., Krovitz, G.E., 2002. Common patterns of facial ontogeny in the hominid line-age. Anat. Rec. 269, 142-147.CrossRefGoogle Scholar
  39. Roopnarine, P.D., 2001. Testing the hypothesis of hete-rochrony in morphometric data: lessons from a bivalved mollusc. In: Zelditch, M.L. (Ed.), Beyond Heterochrony: The Evolution of Development. Wiley-Liss, New York, pp. 271-303.Google Scholar
  40. Santagati, F., Rijli, F.M., 2003. Cranial neural crest and the building of the vertebrate head. Nat. Rev. Genet. 4, 806-820.CrossRefGoogle Scholar
  41. Sarkar, S., Petiot, A., Copp, A., Ferretti, P., Thorogood, P., 2001. FGF2 promotes skeletogenic differen-tiation of cranial neural crest cells. Development 128, 2143-2152.Google Scholar
  42. Shea, B.T., 1988. Heterochrony in primates. In: McKinney, M.L. (Ed.), Heterochrony in Evolution: A Multidisciplinary Approach. Plenum Press, New York, pp. 237-266.CrossRefGoogle Scholar
  43. Waddington, C.H., 1942. Canalization of development and the inheritance of acquired characters. Nature 150, 563-565.CrossRefGoogle Scholar
  44. Wilkie, A.O.M., Morriss-Kay, G.M., 2001. Genetics of craniofacial development and malformation. Nat. Rev. Genet. 2, 458-468.CrossRefGoogle Scholar
  45. Williams, F.L., 2000. Heterochrony and the human fos-sil record: comparing Neandertal and modern human craniofacial ontogeny. In: Stringer, C.B., Barton, R.N.E., Finlayson, J.C. (Eds.), Neanderthals on the Edge. Oxbow Books, Oxford, pp. 257-267.Google Scholar
  46. Williams, F.L., Godfrey, L.R., Sutherland, M.R., 2002. Heterochrony and the evolution of Neandertal and modern human craniofacial form. In: Minugh-Purvis, N., McNamara, K. (Eds.), Human Evolution through Developmental Change. The Johns Hopkins University Press, Baltimore, pp. 405-441.Google Scholar
  47. Winter, D.A., 1990. Biomechanics and Motor Control of Human Movement. Wiley Interscience, New York.Google Scholar
  48. Yu, K., Herr, A.B., Waksman, G., Ornitz, D.M., 2000. Loss of fibroblast growth factor receptor 2 lig-and-binding specificity in Apert syndrome. Proc. Natl. Acad. Sci. U.S.A. 97, 14536-14541.CrossRefGoogle Scholar
  49. Zelditch, M.L., Fink, W.L., 1996. Heterochrony and heterotopy: stability and innovation in the evolu-tion of form. Paleobiology 22, 241-254.Google Scholar
  50. Zelditch, M.L., Sheets, H.D., Fink, W.L., 2000. Spatiotemporal reorganization of growth rates in the evolution of ontogeny. Evolution 54, 1363-1371.CrossRefGoogle Scholar
  51. Zelditch, M.L., Sheets, D.H., Fink, W., 2003. The onto-genetic dynamics of shape disparity. Paleobiology 29, 139-156.CrossRefGoogle Scholar
  52. Zollikofer, C.P.E., Ponce de León, M.S., 2004. Kinematics of cranial ontogeny: heterotopy, het-erochrony, and geometric morphometric analy-sis of growth models. J. Exp. Zool. (Mol. Dev. Evol.) 302B, 322-340.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • C. P. E. Zollikofer
    • 1
  • M. S. Ponce De LeÓn
    • 1
  1. 1.Anthropologisches Institut und MuseumUniversität Zuerich-IrchelZürichSwitzerland

Personalised recommendations