Purification and Characterization of Paralytic Shellfish Poison Binding Protein from Acanthocardia Tuberculatum
Part of the NATO Security through Science Series book series


A paralytic shellfish poison binding protein (PSPBP) was purified with 16.6 fold from the foot of the Moroccan cockles Acanthocardia tuberculatum. Using the affinity chromatography, 2.5 mg of PSPBP showing homogeneity on SDS-PAGE was obtained from 93 mg of crude extract. The purified PSPBP exhibits a specific activity of 2.777 mU/mg proteins and having estimated molecular weight of 181 kDa. Observation of single band equivalent to 88 kDa on SDS-PAGE under reducing conditions suggested it to be a homodimer. The optimal temperature and pH for the purified PSPBP were 30 °C and 7.


Digestive Gland Thin Layer Chromatography Analysis Paralytic Shellfish Poison Mouse Bioassay Paralytic Shellfish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akalay, D., 1995. Intoxications alimentaires par les coquillages (epidemic ponctuelle de novembre 1994, à propos de 6 cas). Thèse de Doctorat en Médecine, faculty of Medecine and Pharmacy of Casablanca, Morocco.Google Scholar
  2. AOAC, 1990. Paralytic shellfish poison, biological method, final action. In: AOAC (ed.), Official Methods of Analysis, 15th Ed., Arlington, VA, method n° 959.08.Google Scholar
  3. Beitler, M.k., 1992. Uptake retention and fate of PSP toxins in the butter clam (saxidomus giganteus). Ph. D. Thesis University of Washington, Seattle, W.A.Google Scholar
  4. Berenguer J.A., Gonzalez L., Jimenez I., Legarda T.M., Olmedo J.B., Burdaspal P.A., 1993. “The effect of commercial processing on the paralytic shellfish poison (PSP) content of naturally contaminated Acanthocardia tuberculatum”. L. Food Add. Contam., 10(2): 217–230.Google Scholar
  5. Bradford, M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochem. Ibid., 72: 248–254.CrossRefGoogle Scholar
  6. Bricelj V.M., Lee J.H., Cembella A.D., Anderson D.M., 1990. Uptake kinetics of paralytic shellfish toxins from the dinoflagellate Alexandrium fundyense in the mussel Mytilus edilus. Mar. Ecol. Prog. Ser., 63: 177–188.Google Scholar
  7. Bricelj, V.M., Shumway, E., 1998. Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation. Rev. Fish. Sci., 6: 315–383.CrossRefGoogle Scholar
  8. Burdaspal, P.A., Bustos, J., Legarda, T.M., Olmedo, J.B., Vigo, M., Gonzalez, L., Berenguer, J.A., 1998. Commercial processing of Acanthocardia tuberculatum L. naturally-contaminated with PSP: evaluation after one year industrial experience. In: Reguera B., Blanco, J., Fernandez, M.L., Wyatt, T., (Eds.), Harmful Algae. Xunta de Galicia, IOC of UNESCO. Spain, pp. 241–244.Google Scholar
  9. Diezel, W., Liebe, S., Kopperschlager, G., Hofmann, E., 1972. Association of proteins during polyacrylamide gel electrophoresis. Acta Biol Med Ger.; 28 (1):27–37.Google Scholar
  10. Doyle, D.D., Wong, M., Tanaka, J., Barr, L., 1982. Saxitoxin binding sites in frog mycocardial cytosol. Science, 215: 1117–1119.CrossRefGoogle Scholar
  11. Harada, T., Oshima, Y., Kamiya, H., Yasumoto, T., 1982. Confirmation of paralytic shellfish toxins in the dinoflagellate Pyrodinium bahamense var. compressa and bivalves in Palau. Nippon Suisan Gakkaishi 48, 821–825.Google Scholar
  12. Hedrick, J.L., Smith, A.J., 1968. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch. Biochem. Biophys., 126: 155–164.CrossRefGoogle Scholar
  13. Kao, C.Y., 1993. Paralytic shellfish poisoning, pp. 75–86. In: Algal toxins in seafood and drinking water, IR Falconer (ed.). Academic Press, London and New York.Google Scholar
  14. Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 4668–4673.CrossRefGoogle Scholar
  15. Lassus, P., Fremy, J.M., Ledoux, M., Bardouil, M., Bohec, M., 1989. Patterns of experimental contamination by Protogonyaulax tamarensis in some French commercial shellfish. Toxicon, 27 (12): 1313–21.CrossRefGoogle Scholar
  16. Li Y., Moczydlowski E., 1991. Purification and partial sequencing of saxiphilin, a saxitoxin-bindig protein from the bullfrog, reveals homology to transferrin. J. bio. Chem., 266: 15481–15487.Google Scholar
  17. Llewellyn, L.E., 1997. Haemolymph protein in xanthid crabs: Its selective binding of saxitoxin and possiblerole in toxin bioaccumulation. Mar. Biol., 128: 599–606.CrossRefGoogle Scholar
  18. Llewellyn, L.E., Bell, P.M., Moczydlowski, E.G., 1997. Phylogenetic survey of soluble saxitoxin-binding activity in pursuit of the function and molecular evolution of saxiphilin, a relative of transferrin. Proc. R. Soc. Lond. B, 264: 891–902.CrossRefGoogle Scholar
  19. Llewellyn, L.E., Doyle, J., Negri, A.P., 1998. A high-through-put, microtiter plate assay for paralytic shellfish poison using the saxitoxin-specific receptor, saxiphilin. Anal. Biochem. 261: 51–56.CrossRefGoogle Scholar
  20. Mahar, J., Lukacs, G.L., Li, Y., Hall, S., Moczydlowski, E., 1991. Pharmacological and biochemical properties of saxiphilin, a soluble saxitoxin-binding protein from the bullfrog (Rana catesbeiana). Toxicon, 29: 53–71.CrossRefGoogle Scholar
  21. Matsui, T., Yamamori, K., Furukawa, K., Kono, M., 2000. Purification and some properties of a tetrodotoxin binding protein from the blood plasma of Kusafugu, Takifugu niphoblos. Toxicon, 38: 463–468.CrossRefGoogle Scholar
  22. Moczydlowski, E.M., Mahar, J., Ravindran, A., 1988. Multiple saxitoxin-binding sites in bullfrog muscle: tetrodotoxin-sensitive sodium channels and tetrodotoxin-insensitive sites of unknown function”. Mol. Pharmacology, 33: 202–211.Google Scholar
  23. Morabito, M.A., Llewellyn, L.E., Moczydlowski, E.G., 1995. Expression of saxiphilin in insect cells and localization of the saxitoxin-binding site to the C-terminal domain homologous to the C-lobe of transferrin. Biochemistry, 34: 13027–13033.CrossRefGoogle Scholar
  24. Morabito, M.A., Moczydlowski, E., 1994a. Molecular cloning of bullfrog saxiphilin: a unique relative of the transferrin family that binds saxitoxin. Proc. Natl. Acad. Sci. USA., 91: 2478–2482.CrossRefGoogle Scholar
  25. Negri, A., Llewellyn, L., 1998. Comparative analyses by HPLC and the sodium channel and saxiphillin 3H-Saxitoxin receptor assays for paralytic shellfish toxins in crustaceans and molluscs from tropical North West Australia. Toxicon, 36: 283–298.CrossRefGoogle Scholar
  26. Official Journal of the European Communities, 1996. n ; L 15, 20.1.96: 46–47.Google Scholar
  27. Oshima, Y., Blackburn, S.I., Hallegraeff, G.M., 1993. Comparative study on paralytic shellfish toxin profiles of the dinoflagellate Gymnodinium catenatum from three different countries. Mar. Biol, 116: 471–476.CrossRefGoogle Scholar
  28. Prakash, A., 1967. Growth and toxicity of a marine dinoflagellate, Gonyaulax tamarensis. J. Fish Res. Bd. Canada, 24: 1589–1600.Google Scholar
  29. Price, R.J., Lee, J.S., 1971. Interaction between paralytic shellfish poison and melanin obtainted from butter clam (Saxidomus giganteus) and syntetic melanin. J. Fish. Res. Bd. Canada, 28: 1789–1792.Google Scholar
  30. Price, R.J., Lee, J.S., 1972. Paralytic shellfish poisoning in British Columbia. J.Fish.Res. Bd. Canada, 29: 1675–1658.Google Scholar
  31. Sagou, R., Amanhir, R., Taleb, H., Vale, P., Blaghen, M., Loutfi, M., 2005. Comparative study on differential accumulation of PSP toxins between cockle (Acanthocardia tuberculatum) and sweet clam (Callista chione)”. Toxicon, 46: 612–618.CrossRefGoogle Scholar
  32. Tagmouti-Talha, F., Chafak, H., Fellat-Zarrouk, K., Talbi, M., Blaghen, M., Mikou, A., Guittet, E., 1996. Detection of toxins in bivalves on the Moroccan coasts. In: Yasumoto, T., Oshima, Y., Fukuyo, Y. (Eds.), Harmful and Toxic Algal Blooms. IOC of UNESCO, Paris, pp. 85–87.Google Scholar
  33. Taleb, H., Vale, P., Jaime, E., Blaghen, M., 2001. Study of paralytic shellfish poisoning toxin profile in shellfish from the Mediterranean shore of Morocco”. Toxicon, 39 (12): 1855–1861.CrossRefGoogle Scholar
  34. Taylor, S.L., 1988. Marine toxins of microbial origin. Food Technology 42 (3):94–8.Google Scholar
  35. Vale, P., Sampayo, M.A.M., 2002. Evaluation of marine biotoxin’s accumulation by Acanthocardia tuberculatum from Algarve, Portugal. Toxicon, 40 (5): 511–517.CrossRefGoogle Scholar
  36. Yotsu-Yamashita, M., Sugimoto, A., Terakana, T., Shoji, Y., Migazawa, T., Yasumoto, T., 2001. Purification, characterization and cDNA cloning of a novel soluble saxotoxin and tetrodotoxin binding protein from plasma of the puffer fish, Fugu pardalis. Eur. J. Biochzm., 268: 5937–5946.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

    • 1
    • 2
    • 3
    • 1
  1. 1.Laboratory of Microbiology, Biotechnology and Environment, Faculty of Sciences Aïn ChockUniversity Hassan II-Aïn ChockCasablancaMorocco
  2. 2.Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences Aïn ChockUniversity Hassan II-Aïn ChocCasablancaMorocco
  3. 3.Laboratory of the Marine BiotoxinsNational institute of Halieutic ResearchCasablancaMorocco

Personalised recommendations