Performances of the Operational Retrieval Code for MIPAS on Envisat and Possible Improvements of Retrieval Techniques for Environment and Climate

  • Bruno Carli
  • Claudio Belotti
  • Samuele del Bianco
Conference paper
Part of the NATO Security through Science Series book series


The MIPAS instrument, operating on board of the Envisat satellite, with its broad band and high resolution measurements has posed a major challenge to operational retrieval techniques. The code developed for the operational analysis of MIPAS measurements has proved that near-realtime operation is possible and that a three-dimensional picture of the atmospheric composition can be retrieved from satellite observations. The features and performances of MIPAS retrieval code are briefly recalled.

The breakthrough in retrieval techniques obtained with MIPAS can be the basis for further significant improvements. The correlation that exists among the observations and among the target parameters are more rigorously and more efficiently accounted for if the retrieval is made handling simultaneously correlated observations and correlated target parameters. This is the case of two-dimensional retrieval and multi-target retrieval. Another direction for further improvements is that of the effect of model errors. These can be better accounted either with the use of the variance covariance matrix of these errors or with the simultaneous retrieval of the main model errors. These retrieval approaches can be very demanding in terms of computing resources, but they change the ultimate accuracy possible with remote sensing techniques and must be taken into account in the planning of future instruments for environment and climate.


retrieval techniques limb sounding atmospheric chemistry Fourier transform spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazzini, G., E. Castelli, S. D. Bianco, B. Dinelli, M. Gai, L. Magnani, L. Santurri, and B. Carli: 2005, ‘The Scientific Analysis of Limb Sounding Observations of the Upper Troposphere’. MARSCHALS level 2B theoretical retrieval study, European Space Agency. ESA Contract 16530/NL/MM.Google Scholar
  2. Beer, R., T. Glavich, and D. Rider: 2001, ‘Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite’. Applied Optics 40(15), 2356–2367.Google Scholar
  3. Bernath, P. F., C. T. McElroy, M. C. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, R. Colin, P. DeCola, M. DeMazière, and J. R. Drummond: 2005, ‘Atmospheric Chemistry Experiment (ACE): Mission Overview’. Geophysical Research Letters 32.Google Scholar
  4. Carlotti, M.: 1988, ‘Global-fit approach to the analysis of limb-scanning atmospheric measurements’. Applied Optics 27, 3250–3254.CrossRefGoogle Scholar
  5. Carlotti, M., G. Brizzi, E. Papandrea, M. Prevedelli, M. Ridolfi, B. M. Dinelli, and L. Magnani: 2005, ‘GMTR: Two-Dimensional Multi-Target Retrieval Model for MIPAS/ENVISAT Observations’. to appear in Applied Optics.Google Scholar
  6. Carlotti, M., B. M. Dinelli, P. Raspollini, and M. Ridolfi: 2001, ‘Geo-fit approach to the analysis of limb-scanning satellite measurements’. Applied Optics 40(12), 1872–1885.Google Scholar
  7. Cayla, F. and P. Javelle: 1995, ‘IASI instrument overview’. In: The International Society for Optical Engineering, Vol. 2583 of The International Society for Optical Engineering. pp. 271–281.Google Scholar
  8. Dudhia, A., V. Jay, and C. Rodgers: 2002, ‘Microwindow selection for high-spectral-resolution Sounders’. Applied Optics 41(18), 3665–3673.Google Scholar
  9. Fischer, H., C. Blom, H. Oelhaf, B. Carli, M. Carlotti, L. Delbouille, D. Ehhalt, J. Flaud, I. Isaksen, M. Lopez-Puertas, C. McElroy,, and R. Zander: 2000, ‘ENVISAT-MIPAS: an instrument for atmospheric chemistry and climate research’. In: SP, Vol. 1229 of SP. ESTEC, Noordwijk, The Netherlands.Google Scholar
  10. Lachance, R. L.: 1999, ‘MIPAS level 1B algorithm technical baseline document: an overview’. In: E. S. Agency (ed.): European Symposium on Atmospheric Measurements from Space, Vol. 1. ESTEC, Noordwijk, The Netherlands, pp. 51–63.Google Scholar
  11. Louet, J.: 2001, ‘The Envisat mission and system’. European Space Agency Bulletin 106.Google Scholar
  12. Nakajima, H., M. Suzuki, A. Matsuzaki, T. Ishigaki, K. Waragai, Y. Mogi, N. Kimura, N. Araki, T. Yokota, H. Kanzawa, T. Sugita, and Y. Sasano: 2002, ‘Characteristics and performance of the Improved Limb Atmospheric Spectrometer (ILAS) in orbit’. J. Geophys. Res. 107(D24), 8213.CrossRefGoogle Scholar
  13. Ridolfi, M., B. Carli, M. Carlotti, T. V. Clarmann, B. Dinelli, A. Dudhia, J. Flaud, M. Höpfner, P. Morris, P. Raspollini, G. Stiller, and R. Wells: 2000, ‘Optimized forward model and retrieval scheme for MIPAS near-real-time data processing’. Applied Optics 39(8), 1323–1340.CrossRefGoogle Scholar
  14. Sivia, D. S.: 1998, Data Analysis: A Bayesian Tutorial. Oxford, UK: Clarendon.Google Scholar
  15. Waters, J.: 1998, ‘Atmospheric measurements by the MLS experiments: Results from UARS and plans for the future’. Adv. Space Res 21(10), 1363–1372.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Bruno Carli
    • 1
  • Claudio Belotti
    • 1
  • Samuele del Bianco
    • 1
  1. 1.IFAC-CNRSesto Fiorentino (FI)Italy

Personalised recommendations