Pressure-Broadening of the 22.2 GHz Line of Water: Basic Results for Remote Sensing of the Atmosphere

  • Gabriele Cazzoli
  • Cristina Puzzarini
  • Giovanni Buffa
  • Ottavio Tarrini
Conference paper
Part of the NATO Security through Science Series book series


For atmospheric purposes, the self- and N2-broadening parameters of the J = 61,6 ← 52,3 (22.2 GHz) rotational transition of water has been investigated in the temperature range 296–338 K. This investigation should be considered of particular interest in monitoring the Earth’s atmosphere because water is a fundamental component and it is well established that the accuracy of collisional broadening parameters has a crucial influence on reduction of remote sensing data. Therefore, a particular effort has been made in order to reduce instrumental as well as systematic errors. Experimental determinations have also been supported by theoretical calculations.


pressure broadening pressure shift relaxation rotational transition water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. W.: 1949, ‘Pressure Broadening in the Microwave and Infra-Red Regions’. Phys. Rev. 76, 647–661.CrossRefGoogle Scholar
  2. Baldacchini, G., S. Marchetti, V. Montelatici, G. Buffa, and O. Tarrini: 1982, ‘Experimental and theoretical investigation of self-broadening and self-shifting of ammonia transition lines in the ν 2 band’. J. Chem. Phys. 76, 5271–5277.CrossRefGoogle Scholar
  3. Baranger, M.: 1958a, ‘General Impact Theory of Pressure Broadening’. Phys. Rev. 112, 855–865.CrossRefGoogle Scholar
  4. Baranger, M.: 1958b, ‘Problem of Overlapping Lines in the Theory of Pressure Broadening’. Phys. Rev. 111, 494–504.CrossRefGoogle Scholar
  5. Baranger, M.: 1958c, ‘Simplified Quantum-Mechanical Theory of Pressure Broadening’. Phys. Rev. 111, 481–493.CrossRefGoogle Scholar
  6. Bauer, A., M. Godon, J. Carlier, and Q. Ma: 1995, ‘Water vapor absorption in the atmospheric window at 239 GHz’. J. Quant. Spectrosc. Radiat. Transfer 53, 411–423.CrossRefGoogle Scholar
  7. Benedict, W. S. and L. D. Kaplan: 1959, ‘Calculation of line widths in H2O-N2 collisions’. J. Chem. Phys. 30, 388–399.Google Scholar
  8. Bernath, P. F.: 2002, ‘The spectroscopy of water vapour: Experiment, theory and applications’. Phys. Chem. Chem. Phys. 4, 1501–1509.CrossRefGoogle Scholar
  9. Boulet, C., D. Robert, and L. Galatry: 1976, ‘Shifts of the vibrationrotation absorption lines of diatomic molecules perturbed by diatomic polar molecules. A theoretical analysis’. J. Chem. Phys. 65, 5302–5314.CrossRefGoogle Scholar
  10. Cazzoli, G. and L. Dore: 1990, ‘Lineshape measurements of rotational lines in the millimeter-wave region by second harmonic detection’. J. Molec. Spectrosc. 141, 49–58.CrossRefGoogle Scholar
  11. Colmont, J.-M., D. Priem, G. Wlodarczak, and R. R. Gamache: 1999, ‘Measurements and calculations of the halfwidth of two rotational transitions of water vapor perturbed by N2, O2, and air’. J. Molec. Spectrosc. 193, 233–243.CrossRefGoogle Scholar
  12. Dicke, R. H.: 1953, ‘The effects of collisions upon the Doppler width of spectral lines’. Phys. Rev. 89, 472–473.CrossRefGoogle Scholar
  13. Di Giacomo, A. and O. Tarrini: 1969, ‘A Graphycal Method for Determining the Width of Microwave Rotational Lines of Gases’. Nuovo Cimento B 62, 1–12.Google Scholar
  14. Di Giacomo, A. and O. Tarrini: 1970, ‘Pressure Shift of Gases in the Microwave Region’. Nuovo Cimento B 68, 165–174.Google Scholar
  15. Dore, L.: 2003, ‘Using Fast Fourier Transform to compute the line shape of frequency-modulated spectral profiles’. J. Molec. Spectrosc. 221, 93–98.CrossRefGoogle Scholar
  16. Drouin, B. J., J. Fisher, and R. R. Gamache: 2004, ‘Temperature dependent pressure induced lineshape of O3 rotational transitions in air’. J. Quant. Spectrosc. Radiat. Transfer 83, 63–81.CrossRefGoogle Scholar
  17. Fano, U.: 1963, ‘Pressure Broadening as a Prototype of Relaxation’. Phys. Rev. 131, 259–268.CrossRefGoogle Scholar
  18. Frost, B. S.: 1976, ‘A theory of microwave lineshifts’. J. Phys. B 9, 1001–1020.CrossRefGoogle Scholar
  19. Gamache, R. R.: 2005, ‘Lineshape parameters for water vapor in the 3.2-17.76 µm region for atmospheric applications’. J. Molec. Spectrosc. 229, 9–18.CrossRefGoogle Scholar
  20. Gamache, R. R., E. Arié, C. Boursier, and J.-M. Hartmann: 1998, ‘Pressurebroadening and pressure-shifting of spectral lines of ozone’. Spectrochim. Acta A 554, 35–63.Google Scholar
  21. Gamache, R. R. and J. Fisher: 2003a, ‘Half-widths of H216O, H218O, H217O, HD16O, D216O: I. Comparison between isotopomers’. J. Quant. Spectrosc. Radiat. Transfer 78, 289–304.CrossRefGoogle Scholar
  22. Gamache, R. R. and J. Fisher: 2003b, ‘Half-widths of H216O, H218O, H217O, HD16O, D216O: II. Comparison with measurement’. J. Quant. Spectrosc. Radiat. Transfer 78, 305–318.CrossRefGoogle Scholar
  23. Gamache, R. R., J.-M. Hartmann, and L. Rosenmann: 1994, ‘Collisional broadenming of water vapor lines-I. A survey of experimental results’. J. Quant. Spectrosc. Radiat. Transfer 52, 481–499.CrossRefGoogle Scholar
  24. Herman, R. M.: 1963a, ‘Impact Theory of the Noble-Gas-Broadened HCl Vibration-Rotation Lines’. Phys. Rev. 132, 262–275.CrossRefGoogle Scholar
  25. Herman, R. M.: 1963b, ‘Theory of pressure shifts of HCl lines caused by noble gases’. J. Quant. Spectrosc. Radiat. Transfer 3, 449–460.CrossRefGoogle Scholar
  26. Kasuga, T., H. Kuze, and T. Shimizu: 1978, ‘Determination of relaxation rate constants of the 22 GHz rotational transition of H2O by coherent transient spectroscopy’. J. Chem. Phys. 69, 5195–5198.CrossRefGoogle Scholar
  27. Liebe, H. J. and T. A. Dillon: 1969, ‘Accurate foreign-gas-broadening parameters of the 22-GHz H2O line from refraction spectroscopy’. J. Chem. Phys. 50, 727–732.CrossRefGoogle Scholar
  28. Liebe, H. J., M. C. Thompson, and T. A. Dillon: 1969, ‘Dispersion studies of the 22 GHz water vapor line shape. I. The Lorentzian behavior’. J. Quant. Spectrosc. Radiat. Transfer 9, 31–47.CrossRefGoogle Scholar
  29. Liljegren, J. C., S. Boukabara, K. Cady-Pereira, and S. A. Clough: 2005, ‘The effect of half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer’. IEEE Transactions on Geoscience and Remote Sensing 43, 1102–1108.CrossRefGoogle Scholar
  30. Murphy, J. S. and J. E. Boggs: 1967, ‘Collision Broadening of Rotational Absorption Lines. I. Theoretical Formulation’. J. Chem. Phys. 47, 691–702.CrossRefGoogle Scholar
  31. Murphy, J. S. and J. E. Boggs: 1969, ‘Collision Broadening of Rotational Absorption Lines. IV. Pressure Broadening of the Ammonia Inversion Spectrum’. J. Chem. Phys. 50, 3320–3329.CrossRefGoogle Scholar
  32. Pickett, H. M.: 1980, ‘Determination of collisional linewidths and shifts by a convolution method’. Appl. Optics 19, 2745–2749.CrossRefGoogle Scholar
  33. Puzzarini, C., L. Dore, and G. Cazzoli: 2002, ‘A Comparison of Lineshape Models in the Analysis of Modulated and Natural Rotational Line Profiles: Application to the Pressure Broadening of OCS and CO’. J. Molec. Spectrosc. 216, 428–436.CrossRefGoogle Scholar
  34. Robert, D. and J. Bonamy: 1979, ‘Short range force effects in semiclassical molecular line broadening calculations’. J. Phys. (Paris) 40, 923–943.Google Scholar
  35. Rosenkranz, P.: 1998, ‘Water vapor continuum absorption: A comparison of measuremtns and models’. Radio Sci. 33, 919–928.CrossRefGoogle Scholar
  36. Rothman, L. S., A. Barbe, D. C. Benner, L. R. Brown, C-Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. V. Auwera, P. Varanasi, and K. Yoshino: 2003, ‘The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001’. J. Quant. Spectrosc. Radiat. Transfer 82, 5–44.CrossRefGoogle Scholar
  37. Tsao, C. J. and B. Curnutte: 1962, ‘Line-widths of pressure-broadened spectral lines’. J. Quant. Spectrosc. Radiat. Transfer 2, 41–91.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Gabriele Cazzoli
    • 1
  • Cristina Puzzarini
    • 1
  • Giovanni Buffa
    • 2
  • Ottavio Tarrini
    • 2
  1. 1.Dipartimento di Chimica “G. Ciamician”Università di BolognaBolognaItaly
  2. 2.IPCF-CNR and Dipartimento di Fisica “E. Fermi”Università di PisaPisaItaly

Personalised recommendations