Skip to main content
  • 1113 Accesses

Owing to their superior mechanical and physical properties, carbon nanotubes (CNTs) seem to hold a great promise as an ideal reinforcing material for composites of high-strength and low-density. In the present paper, the stiffening and strengthening physical mechanisms of CNTs in polymer matrix are investigated theoretically by using micromechanics and multiscale mechanics methods. First, the stiffening effect of CNTs in composites is quantitatively examined by micromechanics methods. Second, a hybrid atomistic/continuum mechanics method is established in the present paper to study the deformation and fracture behaviors of CNTs in composites due to the enormous difference in the scales and mechanisms involved in this issue. A unit cell containing a CNT embedded in a matrix is divided in three regions, which are simulated by the atomic-potential method, the quasi-continuum method based on the modified Cauchy-Born rule, and the classical continuum mechanics, respectively. This method can not only predict the formation of Stone-Wales defects, but also simulate the subsequent deformation and fracture process of CNTs embedded in composites. The present study elucidates some key factors (e.g., waviness, agglomeration, residual stress, and interphase) that influence the mechanical properties of CNT-reinforced composites, and therefore may be useful for improving and tailoring their mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Feng, X.Q., Shi, D.L., Huang, Y.G., Hwang, K.C. (2007). Micromechanics and multiscale mechanics of carbon nanotubes-reinforced composites. In: Sih, G.C. (eds) Multiscaling in Molecular and Continuum Mechanics: Interaction of Time and Size from Macro to Nano. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5062-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5062-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5061-9

  • Online ISBN: 978-1-4020-5062-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics