Hydrotropic Nanocarriers for Poorly Soluble Drugs

  • Tooru Ooya
  • Sang Cheon Lee
  • Kang Moo Huh
  • Kinam Park


Critical Micelle Concentration Atom Transfer Radical Polymerization Polymer Backbone Polymer Micelle Soluble Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taton, T.A. Bio-nanotechnology: Two-way traffic, Nature Materials 2003, 2, 73-44.Google Scholar
  2. 2.
    Baldwin, B.L. Making a network of hydrophobic clusters, Science 2002, 295, 1657-1658.CrossRefPubMedGoogle Scholar
  3. 3.
    Scatena, L.F., Brown, M.G., Richmond, G.L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects, Science 2001, 292, 908-912.CrossRefPubMedGoogle Scholar
  4. 4.
    Jain, T.K., Morales, M.A., Sahoo, S.K., Lesile-Pelecky, D.L., Labhasetwar, V. Iron oxide nanoparticle for sustained delivery of anticancer drugs, Mol. Pharm. 2005, 2, 185-193.CrossRefGoogle Scholar
  5. 5.
    Gao, Z., Lukyanov, A.N., Singhal, A., Torchilin, V.P. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs, Nano Lett. 2004, 4, 1915-1918.CrossRefGoogle Scholar
  6. 6.
    Srinivas, G., Discher, D.E., Klein, M.L. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics, Nature Materials, 2004, 3, 638-644.CrossRefPubMedGoogle Scholar
  7. 7.
    Coffman, R.E., Kildsig, D.O. Hydrotropic solubilization-mechanistic studies, Pharm. Res. 1996, 13, 1460-1463.CrossRefPubMedGoogle Scholar
  8. 8.
    Kildsig, D.O., Suzuki, H., Sunada, H. Mechanistic studies on hydrotropic solubilization of nifedipine in nicotinamide solution. Chem. Pharm. Bull 1998, 46, 125-130.Google Scholar
  9. 9.
    Silva, R.C.D., Spitzer, M., Silva, L.H.M.D., Loh, W. Investigations on the mechanism of aqueous solubility increase caused by some hydrotropes. Thermochimica Acta 1999, 328, 161-167.CrossRefGoogle Scholar
  10. 10.
    Balasubramanian, D., Srinivas, V., Gaikar, V.G., Sharma, M.M. Aggregation behavior of hydrotropic compounds in aqueous solution. J. Phys. Chem. 1989, 93, 3865-3870.CrossRefGoogle Scholar
  11. 11.
    Hussain, M.A., Diluccio, R.C., Maurin, M.B. Complexation of moricizine with nicotinamide and evaluation of the complexation constants by various methods. J. Pharm. Sci. 1993, 82, 77-79.CrossRefPubMedGoogle Scholar
  12. 12.
    Rasool, A.A., Hussain, A.A., Dittert, L.W. Solubility enhancement of some water-insoluble drugs in the presence of nicotinamide and related compounds. J. Pharm. Sci. 1991,80, 387-393.CrossRefPubMedGoogle Scholar
  13. 13.
    Fawzi, M.B., Davision, E., Tute, M.S. Rationalization of drug complexation in aqueous solution by use of huckel frontier molecular orbitals. J. Pharm. Sci. 1980, 69, 104-106.CrossRefPubMedGoogle Scholar
  14. 14.
    Lee, J., Lee, S.C., Acharya, G., Chang, C.J., Park, K. Hydrotropic solubilization of paclitaxel: Analysis of chemical structures for hydrotropic property. Pharm. Res. 2003, 20, 1022-1030.CrossRefPubMedGoogle Scholar
  15. 15.
    Login, R.B., Merianos, J.J., Dandreaux, G., and Shih, J.S. Polymerizable derivatives of 5-oxo-pyrrolidinecarboxylic acid, U.S. Patent, U.S.A., 4,946,967, 1990.Google Scholar
  16. 16.
    Dandreaux, G., Login, R.B., Merianos, J.J., Garelick, P., Plochocka, K., Negrin, M. and Shih, J.S. Poly(pyrrolidonyl oxazoline), U.S. Patent, U.S.A., 5,008,367, 1991.Google Scholar
  17. 17.
    Lee, S.C, Lee, J., and Park, K. Unpublished results.Google Scholar
  18. 18.
    Lee, S.C., Acharya, G., Lee, J. and Park, K. Hydrotropic polymers: Synthesis and characterization of polymers containing picolylnicotinamide moieties, Macromolecules 2003,36, 2248-2255.CrossRefGoogle Scholar
  19. 19.
    Frechet, J.M.J., Tomalia, D.A. Dendrimers and Other Dendritic Polymers, John Wiley and Sons, NY, 2001.CrossRefGoogle Scholar
  20. 20.
    Kojima, C., Kono, K., Maruyama, K., Takagishi, T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs, Bioconjugate Chem. 2000, 11, 910-917.CrossRefGoogle Scholar
  21. 21.
    Morgan, M.T., Carnahan, M.A., Immoos, C.E., Ribeiro, A.A., Finkelstrin, S., Lee, S.J., Grinstaff, M.W. Dendritic molecular capsules for hydrophobic compounds, J. Am. Chem. Soc. 2003, 125, 15485-15489.CrossRefPubMedGoogle Scholar
  22. 22.
    Ihre, H.R., Padilla De Jesus, O.L., Szoka, F.C. Jr., Frechet, J.M.J. Polyester dendritic systems for drug delivery applications: Design, synthesis, and characterization. Bioconjugate Chem. 2002, 13, 443-452.CrossRefGoogle Scholar
  23. 23.
    Padilla De Jesus, O.L., Ihre, H.R., Gagne, L., Frechet, J.M.J., Szoka, F.C., Jr. Bioconjugate Chem. 2002, 13, 453-461.CrossRefGoogle Scholar
  24. 24.
    Haag, R., Sunder, A., Stumbe, J.F. An approach to glycerol dendrimers and pseudo- dendritic polyglycerols. J. Am. Chem. Soc. 2000, 122, 2954-2955.CrossRefGoogle Scholar
  25. 25.
    Frey, H., Haag, R. Dendritic polyglycerol: a new versatile biocompatible material. Rev. Mol. Biotech. 2002, 90, 257-267.CrossRefGoogle Scholar
  26. 26.
    Leuner, C., Dressman, J. Improving drug solubility for oral delivery using solid dispersions, European J. Pharm. Biopharm. 2000, 50, 47-60.CrossRefGoogle Scholar
  27. 27.
    Sugimoto, M., Okagaki, T., Narisawa, S., Koida, Y., Nakajima, K. Improvement of dissolution characteristics and bioavailability of poorly water-soluble drugs by novel cogrinding method using water-soluble polymer. Int. J. Pharm. 1998, 160, 11-19.CrossRefGoogle Scholar
  28. 28.
    Basit, A.W., Newton, J.M., Short, M.D., Waddington, W.A., Ell, P.J., Lacey, L.F. The effects of polyethylene glycol 400 on gastrointestinal transit: Implications for the formulation of poorly-water soluble drugs, Pharm. Res., 2001, 18, 1146-1150.CrossRefPubMedGoogle Scholar
  29. 29.
    Groves, M.J., Bassett, B., Sheth, V. The solubility of 17 β-oestradiol in aqueous polyethylene glycol 400, J. Pharm. Pharmacol., 1984, 36, 799-802.PubMedGoogle Scholar
  30. 30.
    Sato, T., Niwa, H., Chiba, A. Dynamical structure of oligo(ethylene glycol)s-water solutions studied by time domain reflectometry, J. Chem. Phys., 1998, 108, 4138-4147.CrossRefGoogle Scholar
  31. 31.
    Ooya, T., Lee, J., Park, K. Hydrotropic dendrimers of generations 4 and 5: Synthesis, characterization, and hydrotropic solubilization of paclitaxel, Bioconjugate Chem., 2004, 15, 1221-1229.CrossRefGoogle Scholar
  32. 32.
    Ooya, T., Lee, J., Park, K. Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J. Controlled Release, 2003, 93, 121-127.CrossRefGoogle Scholar
  33. 33.
    Mall, S., Buckton, G., Rawlins, D.A. Dissolution behaviour of sulphonamides into sodium dodecyl sulfate micelles: A thermodynamic approach. J. Pharm. Sci., 1996. 85, 75-78.CrossRefPubMedGoogle Scholar
  34. 34.
    Myrdal, P.B., Yalkowsky, S.H. Solubilization of drugs in aqueous media, in Encyclopedia of Pharmaceutical Technology. 2002, Marcel Dekker, Inc. pp. 2458-2480.Google Scholar
  35. 35.
    Bader, H., Ringsdorf, H., Schmidt, B., Watersoluble Polymers in Medicine. Angew. Makromol. Chem., 1984. 123, 457-485.CrossRefGoogle Scholar
  36. 36.
    Allen, C., Maysinger, D., Eisenberg, A. Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 1999. 16, 3-27.CrossRefGoogle Scholar
  37. 37.
    Jones, M.C., Leroux, J.C. Polymeric micelles - a new generation of colloidal drug carriers. Euro. J. Pharm. Biopharm., 1999. 48, 101-111.CrossRefGoogle Scholar
  38. 38.
    Lavasanifar, A., Samuel, J., Kwon, G.S. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv. Drug. Del. Rev., 2002. 54, 169-190.CrossRefGoogle Scholar
  39. 39.
    Kwon, G.S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carr. Syst., 2003. 20, 357-404.CrossRefGoogle Scholar
  40. 40.
    Kwon, G.S., Okano, T. Polymeric micelles as new drug carriers. Adv. Drug. Del. Rev., 1996.21, 107-116.CrossRefGoogle Scholar
  41. 41.
    Soga, O., Van Nostrum, C.F., Fens, M., Rijcken, C.J.F., Schiffelers, R.M., Storm, G. and Hennink, W.E. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J. Control. Rel., 2005. 103, 341-353.CrossRefGoogle Scholar
  42. 42.
    Ooya, T., Lee, J., Park, K., Solubility enhancement of paclitaxel by PEGylated polyglycerol dendrimers. Controlled Release Society 31st Annual Meeting transactions, 2004, #684.Google Scholar
  43. 43.
    Nakanishi, T., Fukushima, S., Okamoto, K., Suzuki, M., Matsumura, Y., Yokoyama, M., Okano, T., Sakurai, Y. and Kataoka, K. Development of the polymer micelle carrier system for doxorubicin. J. Control. Rel., 2001, 74(1-3), 295-302.CrossRefGoogle Scholar
  44. 44.
    Yokoyama, M., Okano, T., Sakurai, Y., Suwa, S. and Kataoka, K. Introduction of cisplatin into polymeric micelle. J. Control. Rel., 1996. 39, 351-356.CrossRefGoogle Scholar
  45. 45.
    Lavasanifar, A., Samuel, J., Kwon, G.S. Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate L-aspartamide) by a solvent evaporation method: effect on the solubilization and haemolytic activity of amphotericin B. J. Control. Rel., 2001,77, 155-160.CrossRefGoogle Scholar
  46. 46.
    Ould-Ouali, L., Noppe, M., Langlois, X., Willems, B., Te Riele, P., Timmerman, P., Brewster, M.E., Arien, A., Preat, V. Self-assembling PEG-p(CL-co-TMC) copolymers for oral delivery of poorly water-soluble drugs: a case study with risperidone. J. Control. Rel., 2005. 102, 657-668.CrossRefGoogle Scholar
  47. 47.
    Aliabadi, H.M., Mahmud, A., Sharifabadi, A.D., Lavasanifar, A. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosprine A. J. Control. Rel., 2005. 104, 301-311.Google Scholar
  48. 48.
    Huh, K.M., Lee, S.C., Cho, Y.W., Lee, J., Jeong, J.H., Park, K. Hydrotropic polymer micelle system for delivery of paclitaxel. J. Control. Rel., 2005. 101, 59-68.CrossRefGoogle Scholar
  49. 49.
    Ooya, T., Huh, K.M., Saitoh, M., Tamiya, E., Park, K. Self-assembly of cholesterol-hydrotropic dendrimer conjugates into micelle-like structure: Preparation and hydrotropic solubilization of paclitaxel. Sci. Tech. Adv. Mater., 2005, 6 (5): 452-456.CrossRefGoogle Scholar
  50. 50.
    Akiyoshi, K., Deguchi, S., Tajima, H., Nishikawa, T., Sunamoto, J. Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules 1997, 30, 857-861.CrossRefGoogle Scholar
  51. 51.
    Yusa, S., Kamachi, M., Morishima, Y. Self-association of cholesterol-end-capped poly(sodium 2-(acrylamido)-2-methylpropanesulfonate) in aqueous solution. Macro-molecules 2000, 33, 1224-1231.Google Scholar
  52. 52.
    Liggins, R.T., Burt, H.M. Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv. Drug Delivery Review 2002, 54, 191-202.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Tooru Ooya
    • 1
  • Sang Cheon Lee
    • 2
  • Kang Moo Huh
    • 3
  • Kinam Park
    • 4
  1. 1.School of Materials ScienceJapan Advanced Institute of Science and TechnologyTatsunokuchiJapan
  2. 2.Korea Institute of Ceramic Engineering and TechnologyGuemcheon-guSouth Korea
  3. 3.Dept. of Polymer Science and EngineeringChungnam National UniversityYuseong-gu Gung-dong 220South Korea
  4. 4.School of PharmacyPurdue UniversityWest LafayetteUSA

Personalised recommendations