Skip to main content

FLUCTUATIONS NEAR THE DECONFINEMENT PHASE TRANSITION BOUNDARY

  • Conference paper
Book cover Nuclear Science and Safety in Europe

Part of the book series: NATO Security through Science Series ((NASTB))

Abstract

In this talk I discuss how a first order phase transition may proceed in rapidly expanding partonic matter produced in a relativistic heavy-ion collision. The resulting picture is that a strong collective flow of matter will lead to the fragmentation of a metastable phase into droplets. If the transition from quark-gluon plasma to hadron gas is of the first order, it will manifest itself by strong nonstatistical fluctuations in observable hadron distributions. I discuss shortly existing experimental data on the multiplicity fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov and J.J.M. Verbarshot, Phys. Rev. D58, 096007 (1998).

    ADS  Google Scholar 

  2. J. Berges and K. Rajagopal, Nucl. Phys. B538, 215 (1999).

    Article  ADS  Google Scholar 

  3. O. Scavenius, A. Mocsy, I.N. Mishustin, D. Rischke, Phys. Rev. C 64, 045202 (2001).

    Article  ADS  Google Scholar 

  4. M. Stephanov, K. Rajagopal and E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998).

    Article  ADS  Google Scholar 

  5. Boris Berdnikov and Krishna Rajagopal, Phys. Rev. D61, 105017 (2000).

    ADS  Google Scholar 

  6. I.N. Mishustin, Phys. Rev. Lett. 82, 4779 (1999).

    Article  ADS  Google Scholar 

  7. I.N. Mishustin, L.M. Satarov, H. Stoecker and W. Greiner, Phys. Rev. C59, 3243 (1999).

    ADS  Google Scholar 

  8. W. Reisdorf and FOPI Collaboration, Nucl. Phys. A612, 493 (1997).

    ADS  Google Scholar 

  9. Nu Xu, Prog. Part. Nucl. Phys. 53, 165 (2004).

    Article  ADS  Google Scholar 

  10. I.N. Mishustin, O. Scavenius, Phys. Rev. Lett. 83, 3134 (1999).

    Article  ADS  Google Scholar 

  11. O. Scavenius, A. Dumitru, E. S. Fraga, J. T. Lenaghan and A. D. Jackson, Phys. Rev. D 63, 116003 (2001).

    Article  ADS  Google Scholar 

  12. K. Paech, H. Stoecker and A. Dumitru, Phys. Rev. C 68, 044907 (2003).

    Article  ADS  Google Scholar 

  13. L.P. Csernai, I.N. Mishustin and A. Mocsy, Heavy Ion Phys., 3, 151 (1996); A. Mocsy, M.Sc. thesis, University of Bergen, 1996.

    Google Scholar 

  14. L.P. Csernai, I.N. Mishustin, Phys. Rev. Lett. 74, 5005 (1995).

    Article  ADS  Google Scholar 

  15. L.P. Csernai, J.I. Kapusta, Phys. Rev. Lett. 69, 737 (1992); Phys. Rev. D46, 1379 (1992).

    Article  ADS  Google Scholar 

  16. D.E. Grady, J. Appl. Phys. 53(1), 322 (1981).

    Article  ADS  Google Scholar 

  17. B.L. Holian and D.E. Grady, Phys. Rev. Lett. 60, 1355 (1988).

    Article  ADS  Google Scholar 

  18. J. Bjorken, Phys. Rev. D27, 140 (1983).

    ADS  Google Scholar 

  19. C.M. Huang and E.V. Shuryak, Phys. Rev. Lett. 75, 4003 (1995); Phys. Rev. C57, 1891 (1998).

    Article  ADS  Google Scholar 

  20. D. Rischke, M. Gyulassy, Nucl. Phys. A597, 701 (1996); A608, 479 (1996).

    ADS  Google Scholar 

  21. I.N. Mishustin, Nucl. Phys. A630, 111c (1998).

    ADS  Google Scholar 

  22. S. Digal, A.M. Srivastava, Phys. Rev. Lett. 80, 1841 (1998).

    Article  ADS  Google Scholar 

  23. J.I. Kapusta, Phys. Rev. D23, 2444 (1981).

    ADS  Google Scholar 

  24. M. Alford, K. Rajagopal and F. Wilczek, Phys. Lett. B422, 247 (1998).

    ADS  Google Scholar 

  25. P. Braun-Münzinger, D. Magestro, K. Redlich, and J. Stachel, Phys. Lett. B518, 41 (2001); P. Braun-Münzinger, J. Stachel, J. Phys. G: Part. Nucl. Phys. 28, 1971 (2002).

    ADS  Google Scholar 

  26. G. Baym, H. Heiselberg, Phys. Lett. B469, 7 (1999).

    ADS  Google Scholar 

  27. T. Abbot and E-802 Collaboration, Phys. Rev. C52, 2663 (1995).

    ADS  Google Scholar 

  28. M. Rybczynski and NA49 Collaboration, J. Phys. Conf. Ser. 5, 74 (2005).

    Article  ADS  Google Scholar 

  29. V.P. Konchakovski, S. Haussler, M.I. Gorenstein, E.L. Bratkovskaya, M. Bleicher, and H. Stöcker, nucl-th/0511083.

    Google Scholar 

  30. P. Currurthers and C.C. Shih, Phys. Lett. 127B, 242 (1983).

    ADS  Google Scholar 

  31. Z. Koba, H.B. Nielson and P. Olesen, Nucl. Phys. B40, 317 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Mishustin, I. (2006). FLUCTUATIONS NEAR THE DECONFINEMENT PHASE TRANSITION BOUNDARY. In: Čechák, T., Jenkovszky, L., Karpenko, I. (eds) Nuclear Science and Safety in Europe. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4965-1_8

Download citation

Publish with us

Policies and ethics