Biological Assessment and Remediation of Contaminated Sediments

  • Saïd el Fantroussi
  • Spiros N. Agathos
  • Dietmar H. Pieper
  • Robert Witzig
  • Beatriz Cámara
  • Lotte Gabriel-Jürgens
  • Howard Junca
  • Giulio Zanaroli
  • Fabio Fava
  • José R. Pérez-Jiménez
  • Lily Y. Young
  • Kelly Hamonts
  • Richard Lookman
  • Miranda Maesen
  • Ludo Diels
  • Winnie Dejonghe
  • John Dijk
  • Dirk Springael
Part of the Nato Science Series: IV: Earth and Environmental Sciences book series (NAIV, volume 73)


Various approaches to clean contaminated aquatic environments have been proposed. In recent years, natural attenuation has received increasing attention and it is generally accepted that microorganisms are the principal mediators of the natural attenuation of many pollutants. However, the complexity of environmental systems such as sediments requires a multifaceted approach to understand microbial processes and their potential. This is even more so under in situ conditions, where the activity of pollutant degrading microorganisms is generally slow, partial and constrained spatially and/or temporally. Recent developments in molecular biology and genomics are offering tools to explore microbial processes at a level that encompasses the genetic characteristics of the local microbial players, culturable or not, as well as their organization into complex communities and their interactions both with each other and with the target chemicals. It is now possible to study microbes directly in their environments at the population level as well as at the single cell level and to link biology to geochemistry. Integrative knowledge from culture independent studies based on functional characters and assessment of the diversity and quantity of catabolic genes in response to pollution, will allow a deeper understanding of and a rational intervention in environmental processes. Moreover, the use of genomic libraries to retrieve genes from natural bacterial communities without cultivation will allow a breakthrough in accessing new microbial capabilities. In this chapter, the main features, advantages and limitations of these innovative approaches to the biomonitoring and analysis of intrinsic bioremediation potential of polluted environments and sediments are critically reviewed. Then, the potential of the same strategies in the integrated chemical, physical and biological monitoring and characterization of polluted sediments subjected to natural decontamination is shown through the description of the main results of case studies performed on a) polychlorinated biphenyl (PCB)-contaminated marine sediments of the Porto Marghera area of Venice Lagoon (Italy) in which the occurrence of PCB-reductive dechlorination processes has been demonstrated for the first time in the literature, b) sediments contaminated by chlorinated aliphatic hydrocarbons (CAHs) collected from different positions of the eutrophic river Zenne (Vilvoorde, Belgium), where they have been found to act as a natural biobarrier for the CAHs occurring in the groundwater that is passing through the sediment zone, hereby reducing the risk of surface water contamination, and c) other environmental contaminated systems subjected to ex-situ and in situ active bioremediation, where these processes are described on the basis of the experience accumulated in pilot and real-life systems.


polychlorinated biphenyls (PCBs) chlorinated aliphatic hydrocarbons bioaugmentation biostimulation reductive dechlorination biosensors PCR DGGE T-RFLP metagenomics sulfate-reducing bacteria fingerprinting methods exsitu treatment in situ treatment engineered bioremediation systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.R. Pace, A molecular view of microbial diversity and the biosphere, Science 276, 734–740 (1997).Google Scholar
  2. 2.
    V.J. Orphan, C.H. House, K.U. Hinrichs, K.D. McKeegan, and E.F. DeLong, Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis, Science 293, 484–487 (2001).Google Scholar
  3. 3.
    K.P. Nevin, K.T. Finneran, and D.R. Lovley, Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment, Appl. Environ. Microbiol. 69, 3672–3675 (2003).Google Scholar
  4. 4.
    S. El Fantroussi, W. Verstraete, and E.M. Top, Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives, Appl. Environ. Microbiol. 66, 5110–5115 (2000).Google Scholar
  5. 5.
    M.R. Harkness, J.B. McDermott, D.A. Abramowicz, J.J. Salvo, W.P. Flanagan, M.L. Stephens, F.J. Mondello, R.J. May, J.H. Lobos, K.M. Carroll, et al., In situ stimulation of aerobic PCB biodegradation in Hudson river sediments, Science 259, 503–507 (1993).Google Scholar
  6. 6.
    E.L. Madsen, Epistemology of environmental microbiology, Environ. Sci. Technol. 32, 429–439 (1998).Google Scholar
  7. 7.
    L. Eyers, I. George, L. Schuler, S.N. Agathos, and S. El Fantroussi, Environmental metagenomics: exploring the unmined richness of microbes to degrade xenobiotics. Appl. Microbiol.Biotechnol. 66, 123–130 (2004).Google Scholar
  8. 8.
    P.D. Schloss, and J. Handelsman, Biotechnological prospects from metagenomics, Curr. Opin. Microbiol. 14, 303–310 (2003).Google Scholar
  9. 9.
    E.L. Madsen, Methods for determining biodegradability. In: C.J. Hurst, R.L. Crawford, G.R. Knudsen, M.J. McInerney and L.D. Stetzenbach (Eds) Manual of Environmental Microbiology, 2nd Edition, ASM Press, Washington DC. (2002).Google Scholar
  10. 10.
    S. El Fantroussi, M. Belkacemi, E.M. Top, J. Mahillon, H. Naveau, and S.N. Agathos, Bioaugmentation of a soil bioreactor designed for pilot scale anaerobic bioremediation studies, Environ. Sci. & Technol. 33, 2992–3001 (1999).Google Scholar
  11. 11.
    E.R. Hendrickson, J.A. Payne, R.M. Young, M.G. Starr, M.P. Perry, S. Fahnestock, D.E. Ellis, and R.C. Ebersole, Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe, Appl. Environ. Microbiol. 68, 485–495 (2002).Google Scholar
  12. 12.
    J.R. de Lipthay, N. Tuxen, K. Johnsen, L.H. Hansen, H.J. Albrechtsen, P.L. Bjerg and J. Aamand, In situ exposure to low herbicide concentrations affects microbial population composition and catabolic gene frequency in an aerobic shallow aquifer, Appl. Environ. Microbiol. 69, 461–7 (2003).Google Scholar
  13. 13.
    W.S. Reeburgh, S.C. Whalen, and M.J. Alperin, The role of methylotrophy in the global methane budget, p. 1–14. In J.C. Murrell, and D.P. Kelly (ed.), Microbial growth on C1 compounds. Proceedings of the 7th International Symposium. American Society for Microbiology, Washington, D.C. (1993).Google Scholar
  14. 14.
    T.R. Thomsen, K. Finster, and N.B. Ramsing, Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment, Appl. Environ. Microbiol. 67, 1646–1656 (2001).Google Scholar
  15. 15.
    K.U. Hinrichs, J.M. Hayes, S.P. Sylva, P.G. Brewer, and E.F. DeLong, Methane-consuming archaebacteria in marine sediments, Nature 398, 802–805 (1999).Google Scholar
  16. 16.
    R.M. Atlas and R. Bartha, Microbial Ecology: Fundamentals and Applications. Menlo Park, CA: Benjamin/Cummings (1998).Google Scholar
  17. 17.
    W.W. Mohn and J.M. Tiedje, Microbial reductive dehalogenation, Microbiol. Rev. 56, 482–507. (1992).Google Scholar
  18. 18.
    V. Achá, M. Meurens, H. Naveau, and S.N. Agathos, ATR-FTIR sensor development for continuous on-line monitoring of chlorinated aliphatic hydrocarbons in a fixed-bed bioreactor, Biotechnol. Bioeng. 68, 473–487 (2000).Google Scholar
  19. 19.
    R.M. Atlas, Microbial hydrocarbon degradation-bioremediation of oil spills, J. Chem. Technol. Biotechnol. 52, 149–156 (1991).Google Scholar
  20. 20.
    F.H. Chapelle, Bioremediation of petroleum hydrocarbon-contaminated ground water: The perspectives of history and hydrology, Ground Water 37, 122–132 (1999).Google Scholar
  21. 21.
    D.C. Dobbins, C.M. Aelion, and F. Pfaender, Subsurface, terrestrial microbial ecology and biodegradation of organic chemicals: A review, Crit. Rev. Environ. Ctrl. 22, 67–136 (1992).Google Scholar
  22. 22.
    D.F. Pope, and J.N. Jones, 1999, Monitored natural attenuation of chlorinated solvents, edited. (EPA, Washington, 1999), pp. 1–3.Google Scholar
  23. 23.
    K. Watanabe, H. Futamata, and S. Harayama, Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies, Antonie Van Leeuwenhoek 81, 655–663 (2002).Google Scholar
  24. 24.
    D.H. Pieper, V. dos Santos, and P.N. Golyshin, Genomic and mechanistic insights into the biodegradation of organic pollutants, Curr. Opin. Biotechnol. 15, 215–224 (2004).Google Scholar
  25. 25.
    K. Watanabe, Microorganisms relevant to bioremediation, Curr. Opin. Biotechnol. 12, 237–241 (2001).Google Scholar
  26. 26.
    C.S. Harwood, and R.E. Parales, The beta-ketoadipate pathway and the biology of self-identity, Annu. Rev. Microbiol. 50, 553–590 (1996).Google Scholar
  27. 27.
    N. Söhngen, Benzin, Petroleum, Paraffinöl und Paraffin als Kohlenstoff-und Energiequelle für Mikroben, Zentr. Bacteriol. Parasitenk. Abt II 37, 595–609 (1913).Google Scholar
  28. 28.
    R.Y. Stanier, The oxidation of aromatic compounds by fluorescent Pseudomonas, J. Bacteriol. 55, 477–494 (1947).Google Scholar
  29. 29.
    M. Boll, G. Fuchs, and J. Heider, Anaerobic oxidation of aromatic compounds and hydrocarbons, Curr. Opin. Chem. Biol. 6, 604–611 (2002).Google Scholar
  30. 30.
    J. Heider, A.M. Spormann, H.R. Beller, and F. Widdel, Anaerobic bacterial metabolism of hydrocarbons, FEMS Microbiol. Rev. 22, 459–473 (1998).Google Scholar
  31. 31.
    M.R. Smith, The biodegradation of aromatic hydrocarbons by bacteria, Biodegradation 1, 191–206 (1990).Google Scholar
  32. 32.
    D.T. Gibson, and R.E. Parales, Aromatic hydrocarbon dioxygenases in environmental biotechnology, Curr. Opin. Biotechnol. 11, 236–243 (2000).Google Scholar
  33. 33.
    S. Beil, J.R. Mason, K.N. Timmis, and D.H. Pieper, Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene, J. Bacteriol. 180, 5520–5528 (1998).Google Scholar
  34. 34.
    K. Furukawa, H. Suenaga, and M. Goto, Biphenyl dioxygenases: functional versatilities and directed evolution, J. Bacteriol. 186, 5189–5196 (2004).Google Scholar
  35. 35.
    M. Zielinski, S. Backhaus, and B. Hofer, The principal determinants for the structure of the substrate-binding pocket are located within a central core of a biphenyl dioxygenase alpha subunit, Microbiology 148, 2439–2448 (2002).Google Scholar
  36. 36.
    R.E. Parales, S.M. Resnick, C.L. Yu, D.R. Boyd, N.D. Sharma, and D.T. Gibson, Regioselectivity and enantioselectivity of naphthalene dioxygenase during arene cisdihydroxylation: Control by phenylalanine 352 in the alpha subunit, J. Bacteriol. 182, 5495–5504 (2000).Google Scholar
  37. 37.
    J. Armengaud, B. Happe, and K.N. Timmis, Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: Catabolic genes dispersed on the genome, J. Bacteriol. 180, 3954–3966 (1998).Google Scholar
  38. 38.
    D.T. Gibson, R.L. Roberts, M.C. Wells, and V.M. Kobal, Oxidation of biphenyl by a Beijerinckia species, Biochem. Biophys. Res. Comm. 50, 211–215 (1973).Google Scholar
  39. 39.
    Y. Furusawa, V. Nagarajan, M. Tanokura, E. Masai, M. Fukuda, and T. Senda, Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp strain RHA1, J. Mol. Biol. 342, 1041–1052 (2004).Google Scholar
  40. 40.
    X.S. Dong, S. Fushinobu, E. Fukuda, T. Terada, S. Nakamura, K. Shimizu, H. Nojiri, T. Omori, H. Shoun, and T. Wakagi, Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01, J. Bacteriol. 187, 2483–2490 (2005).Google Scholar
  41. 41.
    M. Zielinski, S. Kahl, H.J. Hecht, and B. Hofer, Pinpointing biphenyl dioxygenase residues that are crucial for substrate interaction, J. Bacteriol. 185, 6976–6980 (2003).Google Scholar
  42. 42.
    H. Junca, I. Plumeier, H. Hecht, and D. Pieper, Difference in kinetic behaviour of catechol 2,3-dioxygenase variants from a polluted environment, Microbiology 150, 4181–4187 (2004).Google Scholar
  43. 43.
    J.G. Leahy, P.J. Batchelor, and S.M. Morcomb, Evolution of the soluble diiron monooxygenases, FEMS Microbiol. Rev. 27, 449–479 (2003).Google Scholar
  44. 44.
    M.S. Shields, S.O. Montgomery, P.J. Chapman, S.M. Cuskey, and P.H. Pritchard, Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4, Appl. Environ. Microbiol. 55, 1624–1629 (1989).Google Scholar
  45. 45.
    R.H. Olsen, J.J. Kukor, and B. Kaphammer, A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1, J. Bacteriol. 176, 3749–3756 (1994).Google Scholar
  46. 46.
    G.M. Whited, and D.T. Gibson, Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1, J. Bacteriol. 173, 3010–3016 (1991).Google Scholar
  47. 47.
    A. Fishman, Y. Tao, and T.K. Wood, Toluene 3-monooxygenase of Ralstonia pickettii PKO1 is a para-hydroxylating enzyme, J. Bacteriol. 186, 3117–3123 (2004).Google Scholar
  48. 48.
    G.M. Whited, and D.T. Gibson, Separation and partial characterization of the enzymes of the toluene-4-monooxygenase catabolic pathway in Pseudomonas mendocina KR1, J. Bacteriol. 173, 3017–3020 (1991).Google Scholar
  49. 49.
    K.H. Mitchell, J.M. Studts, and B.G. Fox, Combined participation of hydroxylase active site residues and effector protein binding in a para to ortho modulation of toluene 4-monooxygenase regiospecificity, Biochemistry 41, 3176–3188 (2002).Google Scholar
  50. 50.
    L. Rui, K.F. Reardon, and T.K. Wood, Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds, Appl. Microbiol. Biotechnol. 66, 422–429 (2005).Google Scholar
  51. 51.
    K.A. Canada, S. Iwashita, H. Shim, and T.K. Wood, Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation, J. Bacteriol. 184, 344–349 (2002).Google Scholar
  52. 52.
    M.H. Sazinsky, J. Bard, A. Di Donato, and S.J. Lippard, Crystal structure of the toluene/o-xylene monooxygenase hydroxylase from Pseudomonas stutzeri OX1-Insight into the substrate specificity, substrate channeling, and active site tuning of multicomponent monooxygenases, J. Biol. Chem. 279, 30600–30610 (2004).Google Scholar
  53. 53.
    W. Reineke, Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly, Annu. Rev. Microbiol. 52, 287–331 (1998).Google Scholar
  54. 54.
    D. Pieper, and W. Reineke, 2004, Degradation of chloroaromatics by Pseudomona(d)s, in: The Pseudomonads Vol III. Biosynthesis of Macromolecules and Molecular metabolism, edited by J.L. Ramos, (Kluwer Academic/Plenum Publishers, New York, 2004), pp. 509–574.Google Scholar
  55. 55.
    L.D. Eltis, and J.T. Bolin, Evolutionary relationships among extradiol dioxygenases, J. Bacteriol. 178, 5930–5937 (1996).Google Scholar
  56. 56.
    A. Kitayama, T. Achioku, T. Yanagawa, K. Kanou, M. Kikuchi, H. Ueda, E. Suzuki, H. Nishimura, T. Nagamune, and Y. Kawakami, Cloning and characterization of extradiol aromatic ring-cleavage dioxygenases of Pseudomonas aeruginosa JI104, J. Ferm. Bioeng. 82, 217–223 (1996).Google Scholar
  57. 57.
    N. Schweigert, A.J.B. Zehnder, and R.I.L. Eggen, Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals, Environ. Microbiol. 3, 81–91 (2001).Google Scholar
  58. 58.
    D. Perez-Pantoja, T. Ledger, D.H. Pieper, and B. Gonzalez, Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid, J. Bacteriol. 185, 1534–1542 (2003).Google Scholar
  59. 59.
    H.R. Beller, and A.M. Spormann, Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T, J. Bacteriol. 179, 670–676 (1997).Google Scholar
  60. 60.
    B. Leuthner, C. Leutwein, H. Schulz, P. Horth, W. Haehnel, E. Schiltz, H. Schagger, and J. Heider, Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism, Mol. Microbiol. 28, 615–628 (1998).Google Scholar
  61. 61.
    F. Widdel, and R. Rabus, Anaerobic biodegradation of saturated and aromatic hydrocarbons, Curr. Opin. Biotechnol. 12, 259–276 (2001).Google Scholar
  62. 62.
    E. Annweiler, A. Materna, M. Safinowski, A. Kappler, H.H. Richnow, W. Michaelis, and R.U. Meckenstock, Anaerobic degradation of 2-methylnaphthalene by a sulfatereducing enrichment culture. Appl. Environ. Microbiol. 66, 5329–5333 (2000).Google Scholar
  63. 63.
    S.R. Kane, H.R. Beller, T.C. Legler, and R.T. Anderson, Biochemical and genetic evidence of benzylsuccinate synthase in toluene-degrading, ferric iron-reducing Geobacter metallireducens, Biodegradation 13, 149–154 (2002).Google Scholar
  64. 64.
    C.D. Phelps, J. Battistelli, and L.Y. Young, Metabolic biomarkers for monitoring anaerobic naphthalene biodegradation in situ, Environ. Microbiol. 4, 532–537 (2002).Google Scholar
  65. 65.
    J.D. Coates, R. Chakraborty, and M.J. McInerney, Anaerobic benzene biodegradation-a new era, Res. Microbiol. 153, 621–628 (2002).Google Scholar
  66. 66.
    W.W. Mohn, and J.M. Tiedje, Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomonile tiedjei, Arch. Microbiol. 157, 1–6 (1991).Google Scholar
  67. 67.
    C. Holliger, C. Regeard, and G. Diekert, 2003, Dehalogenation by anaerobic bacteria, in: Dehalogenation: Microbial Processes and Environmental Applications, edited by M.M. Häggblom, and I.D. Bossert. (Kluwer Academic Publishing, Boston, USA, 2003), pp. 115–157.Google Scholar
  68. 68.
    J.Z. He, K.M. Ritalahti, K.L. Yang, S.S. Koenigsberg, and F.E. Loffler, Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium, Nature 424, 62–65 (2003).Google Scholar
  69. 69.
    L. Adrian, U. Szewzyk, J. Wecke, and H. Gorisch, Bacterial dehalorespiration with chlorinated benzenes, Nature 408, 580–583 (2000).Google Scholar
  70. 70.
    M. Bunge, L. Adrian, A. Kraus, M. Opel, W.G. Lorenz, J.R. Andreesen, H. Gorisch, and U. Lechner, Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium, Nature 421, 357–360 (2003).Google Scholar
  71. 71.
    S. Ni, J.K. Fredrickson, and L. Xun, Purification and characterization of a novel 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of Desulfomonile tiedjei DCB-1, J. Bacteriol. 177, 5135–5139 (1995).Google Scholar
  72. 72.
    B.C. Berks, F. Sargent, E. De Leeuw, A.P. Hinsley, N.R. Stanley, R.L. Jack, G. Buchanan, and T. Palmer, A novel protein transport system involved in the biogenesis of bacterial electron transfer chains, Biochim. Biophys. Acta 1459, 325–330 (2000).Google Scholar
  73. 73.
    J.A. Muller, B.M. Rosner, G. von Abendroth, G. Meshulam-Simon, P.L. McCarty, and A.M. Spormann, Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp strain VS and its environmental distribution, Appl. Environ. Microbiol. 70, 4880–4888 (2004).Google Scholar
  74. 74.
    V. Torsvik, and L. Ovreas, Microbial diversity and function in soil: from genes to ecosystems, Curr. Opin. Microbiol. 5, 240–245 (2002).Google Scholar
  75. 75.
    P. Wikstrom, A. Wiklund, A.C. Andersson, and M. Forsman, DNA recovery and PCR quantification of catechol 2,3-dioxygenase genes from different soil types, J. Biotechnol. 52, 107–120 (1996).Google Scholar
  76. 76.
    H.R. Beller, S.R. Kane, T.C. Legler, and P.J. Alvarez, A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene, Environ. Sci. Technol. 36, 3977–3984 (2002).Google Scholar
  77. 77.
    H. Junca, and D.H. Pieper, Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries, Environ. Microbiol. 6, 95–110 (2004).Google Scholar
  78. 78.
    M. Orita, H. Iwahana, H. Kanazawa, K. Hayashi, and T. Sekiya, Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms, Proc. Natl. Acad. Sci. U.S.A. 86, 2766–2770 (1989).Google Scholar
  79. 79.
    F. Schwieger, and C.C. Tebbe, A new approach to utilize PCR-single-strandconformation polymorphism for 16s rRNA gene-based microbial community analysis, Appl. Environ. Microbiol. 64, 4870–4876 (1998).Google Scholar
  80. 80.
    A. Schmalenberger, and C.C. Tebbe, Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies, Mol. Ecol. 12, 251–261 (2003).Google Scholar
  81. 81.
    A. Okuta, K. Ohnishi, and S. Harayama, PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes, Gene 212, 221–228 (1998).Google Scholar
  82. 82.
    J. Gescher, A. Zaar, M. Mohamed, H. Schagger, and G. Fuchs, Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii, J. Bacteriol. 184, 6301–6315 (2002).Google Scholar
  83. 83.
    A. Zaar, J. Gescher, W. Eisenreich, A. Bacher, and G. Fuchs, New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii, Mol. Microbiol. 54, 223–238 (2004).Google Scholar
  84. 84.
    V.J. Denef, J. Park, T.V. Tsoi, J.M. Rouillard, H. Zhang, J.A. Wibbenmeyer, W. Verstraete, E. Gulari, S.A. Hashsham, and J.M. Tiedje, Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400, Appl. Environ. Microbiol. 70, 4961–4970 (2004).Google Scholar
  85. 85.
    O.V. Moiseeva, I.P. Solyanikova, S.R. Kaschabek, J. Groning, M. Thiel, L.A. Golovleva, and M. Schlomann, A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: Genetic and biochemical evidence, J. Bacteriol. 184, 5282–5292 (2002).Google Scholar
  86. 86.
    P. Nikodem, V. Hecht, M. Schlomann, and D.H. Pieper, New bacterial pathway for 4-and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp strain MT1, J. Bacteriol. 185, 6790–6800 (2003).Google Scholar
  87. 87.
    J. Yun, S. Kang, S. Park, H. Yoon, M. Kim, S. Heu, and S. Ryu, Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library, Appl. Environ. Microbiol. 70, 7229–7235 (2004).Google Scholar
  88. 88.
    S. Lee, K. Won, H. Lim, J. Kim, G. Choi, and K. Cho, Screening for novel lipolytic enzymes from uncultured soil microorganisms, Appl. Microbiol. Biotechnol. 65, 720–726 (2004).Google Scholar
  89. 89.
    E.M. Gabor, W.B.L. Alkema, and D.B. Janssen, Quantifying the accessibility of the metagenome by random expression cloning techniques, Environ. Microbiol. 6, 879–886 (2004).Google Scholar
  90. 90.
    A. Martinez, S.J. Kolvek, C.L.T. Yip, J. Hopke, K.A. Brown, I.A. MacNeil, and M.S. Osburne, Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts, Appl. Environ. Microbiol. 70, 2452–2463 (2004).Google Scholar
  91. 91.
    T. Uchiyama, T. Abe, T. Ikemura, and K. Watanabe, Substrate-induced geneexpression screening of environmental metagenome libraries for isolation of catabolic genes, Nat. Biotechnol. 23, 88–93 (2005).Google Scholar
  92. 92.
    J.F. Jr. Brown and R.E. Wagner, PCB movement, dechlorination and detoxification in the Acushnet estuarine, Environ. Toxicol. Chem. 9, 1215–1233 (1990).Google Scholar
  93. 93.
    D.L. Bedard and J.F. Quensen III, Microbial reductive dechlorination of polychlorinated biphenyls, in: Microbial Transformation and Degradation of Toxic Organic Chemicals, edited by L.Y. Young and C.E. Cerniglia (Wiley-Liss Division, John Wiley and Sons, New York, 1995), pp.127–216.Google Scholar
  94. 94.
    J. Wiegel and Q. Wu, Microbial reductive dehalogenation of polychlorinated biphenyls, FEMS Microbiol. Ecol., 32, 1–15 (2000).Google Scholar
  95. 95.
    A.C. Alder, M.M. Häggblom, S. Oppenheimer and L.Y. Young, Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments, Environ. Sci. Technol. 27, 530–538 (1993).Google Scholar
  96. 96.
    F. Fava, S. Gentilucci, and G. Zanaroli, Anaerobic biodegradation of weathered polychlorinated biphenyls (PCBs) in contaminated sediments of Porto Marghera (Venice Lagoon, Italy), Chemosphere 53, 101–109 (2003).Google Scholar
  97. 97.
    L.D. Palekar, K.A. Maruya, J.E. Kostka and J. Wiegel, Dehalogenation of 2,6-dibromobiphenyl and 2,3,4,5,6-pentachlorobiphenyl in contaminated estuarine sediment, Chemosphere 53, 593–600 (2003).Google Scholar
  98. 98.
    J.L. Lake, R.J. Pruell and F.A. Osterman, An examination of dechlorination process and pathways in new Bedford Harbor sediments, Mar. Environ. Res. 33, 31–47 (1992).Google Scholar
  99. 99.
    G.D. Øfjord, J.A. Puhakka, and J.F. Ferguson, Reductive dechlorination of Aroclor 1254 by marine sediment cultures, Environ. Sci. Technol. 28, 2286–2294 (1994).Google Scholar
  100. 100.
    M. Berkaw, K.R. Sowers and H.D. May, Anaerobic ortho dechlorination of PCBs by estuarine sediments from Baltimore Harbor, Appl. Environ. Microbiol. 62, 2534–2539 (1996).Google Scholar
  101. 101.
    S.E. Apitz, B.P. Ayers and V.J. Kirtay, Use of data on contaminant/sediment interactions to streamline sediment assessment and management. (2004).Google Scholar
  102. 102.
    F. Fava, G. Zanaroli and L.Y. Young, Microbial reductive dechlorination of preexisting PCBs and spiked 2,3,4,5,6-pentachlorobiphenyl in anaerobic slurries of a contaminated sediment of Venice Lagoon (Italy), FEMS Microbiol. Ecol. 44, 309–318 (2003).Google Scholar
  103. 103.
    D.J. Scala and L.J. Kerkhof, Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments”, FEMS Microbiol. Lett. 162, 61–68 (1999).Google Scholar
  104. 104.
    R.D. Kimbrough, Polychlorinated biphenyls and human health: an update, Crit. Rev. Toxicol. 25, 133–163 (1995).Google Scholar
  105. 105.
    M.J. Zwiernik, J.F. III Quensen and S.A. Boyd, FeSO4 amendments stimulate extensive anaerobic PCB dechlorination, Environ. Sci. Technol. 32, 3360–3365 (1998).Google Scholar
  106. 106.
    D.M. Ward and M.R. Wrinfey, Interactions between methanogenic and sulfate-reducing bacteria in sediments, Adv. Microbiol. Ecol. 3, 141–175 (1985).Google Scholar
  107. 107.
    J. Kim and G.-Y. Rhee, Reductive dechlorination of polychlorinated biphenyls: interactions of dechlorinating microorganisms with methanogens and sulfate reducers, Environ. Toxicol. Chem. 18, 2696–2702 (1999).Google Scholar
  108. 108.
    G. Bretschko, and H. Moser, Transport and Retention of Matter in Riparian Ecotones, Hydrobiologica 251(1–3): 95–102 (1993).Google Scholar
  109. 109.
    B.G. Fraser, and D.D. Williams, Seasonal Boundary Dynamics of a Groundwater/Surface Water Ecotone, Ecology 79(6): 2019–2031 (1998).Google Scholar
  110. 110.
    M.W. Naegeli., and U. Uehlinger, Contribution of the Hyporheic Zone to Ecosystem Metabolism in a Prealpine Gravel-Bed River, Journal of the North American Benthological Society 16(4): 794–804 (1997).Google Scholar
  111. 111.
    M. Push, D. Fiebig, I. Brettar, H. Eisenmann, B.K. Ellis, L.A. Kaplan, M.A. Lock, M.W. Naegeli, and W. Traunspurger, The Role of Micro-Organisms in the Ecological Connectivity of Running Waters, Freshwater Biology 40(3): 453–495 (1998).Google Scholar
  112. 112.
    B. Jr. Conant, J.A. Cherry, and R.W. Gillham, A PCE Groundwater Plume Discharging into a River: Influence of the Streambed and Near-River Zone on Contaminant Distributions, Journal of Contaminant Hydrology 73(1–4): 249–279 (2004).Google Scholar
  113. 113.
    R. Krajmalnik-Brown, T. Hölscher, I.N. Thomson, F.M. Saunders, K.M. Ritalahti, and F.E. Löffler, Genetic Identification of a Putative Vinyl Chloride Reductase in Dehalococcoides sp. Strain BAV1, Applied and Environmental Microbiology 70(10): 6347–6351 (2004).Google Scholar
  114. 114.
    F.E. Löffler, Q. Sun, J. Li, and J.M. Tiedje, 16S rRNA Gene-Based Detection of Tetrachloroethene-Dechlorinating Desulfuromonas and Dehalococcoides Species, Applied and Environmental Microbiology 66(4): 1369–1374 (2000).Google Scholar
  115. 115.
    J.A. Müller., B.M. Rosner, G. von Abendroth, G. Meshulam-Simon, P.L. McCarty, and A.M. Spormann, Molecular Identification of the Catabolic Vinyl Chloride Reductase from Dehalococcoides sp. Strain VS and Its Environmental Distribution, Applied and Environmental Microbiology 70(8):4880–4888 (2004).Google Scholar
  116. 116.
    C. Regeard, J. Maillard, and C. Holliger, Development of Degenerate and Specific PCR Primers for the Detection and Isolation of Known and Putative Chloroethene Reductive Dehalogenase Genes, Journal of Microbiological Methods 56(1): 107–118 (2004).Google Scholar
  117. 117.
    P. Vandevivere, and W. Verstraete, Environmental applications, p. 531–557. In C. Ratledge, and B. Kristiansen (ed.), Basic Biotechnology, 2nd Edition. Cambridge University Press, Cambridge, U.K. (2001).Google Scholar
  118. 118.
    B.E. Rittmann, and P.L. McCarty, Environmental Biotechnology: Principles and Applications, Chapter 15, p. 695–728. McGraw-Hill, New York (2001).Google Scholar
  119. 119.
    J.C. Philp, and R.M. Atlas, Bioremediation of Contaminated Soils and Aquifers, p. 139–236. In R.M. Atlas, and J.C. Philp (ed.) Bioremediation. American Society for Microbiology Press, Washington, DC (2005).Google Scholar
  120. 120.
    S. El Fantroussi, and S.N. Agathos, Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr. Opin. Microbiol. 8, 268–275 (2005).Google Scholar
  121. 121.
    S. El Fantroussi, M. Belkacemi, E.M. Top, J. Mahillon, H. Naveau, and S.N. Agathos, Bioaugmentation of a soil bioreactor designed for pilot-scale anaerobic bioaremediation studies, Environ. Sci. Technol. 33, 2992–3001 (1999).Google Scholar
  122. 122.
    E.K. Nyer, F. Payne, and S. Sutherson, Environment vs. bacteria or let’s play ‘name that bacteria’, Ground Wat. Monitor. Remed. 23, 36–45 (2003).Google Scholar
  123. 123.
    R. El Mamouni, R. Jacquet, P. Gerin, and S.N. Agathos, Influence of electron donors and acceptors on the bioremediation of soil contaminated with trichloroethene and nickel: Laboratory and pilot-scale study. Wat. Sci. Technol. 45, 49–54 (2002).Google Scholar
  124. 124.
    O. Drzyzga, R. El Mamouni, S.N. Agathos and J.C. Gottschal, Dehalogenation of chlorinated ethenes and immobilization of nickel in anaerobic sediment columns under sulfidogenic conditions. Environ. Sci. Technol. 36, 2630–2635 (2002).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Saïd el Fantroussi
    • 1
  • Spiros N. Agathos
    • 1
  • Dietmar H. Pieper
    • 2
  • Robert Witzig
    • 2
  • Beatriz Cámara
    • 2
  • Lotte Gabriel-Jürgens
    • 2
  • Howard Junca
    • 2
  • Giulio Zanaroli
    • 3
  • Fabio Fava
    • 3
  • José R. Pérez-Jiménez
    • 4
  • Lily Y. Young
    • 4
  • Kelly Hamonts
    • 5
  • Richard Lookman
    • 5
  • Miranda Maesen
    • 5
  • Ludo Diels
    • 5
  • Winnie Dejonghe
    • 5
  • John Dijk
    • 6
  • Dirk Springael
    • 6
  1. 1.Unit of Bioengineering, Faculty of Bioengineering, Agronomy & EnvironmentCatholic University of LouvainLouvain-la-NeuveBelgium
  2. 2.GBF German Research Centre for BiotechnologyBraunschweigGermany
  3. 3.DICASM, Faculty of EngineeringAlma Mater Studiorum-University of BolognaBolognaItaly
  4. 4.Department of Environmental Sciences and Biotechnology Center for Agriculture and the Environment, Cook College, RutgersThe State University of New JerseyNew BrunswickUSA
  5. 5.Flemish Institute for Technological ResearchGeelBelgium
  6. 6.Catholic University of LeuvenHeverleeBelgium

Personalised recommendations