Skip to main content

APPLICATIONS OF THE SELF-POTENTIAL METHOD TO HYDROLOGICAL PROBLEMS

  • Conference paper

Part of the book series: NATO Science Series ((NAIV,volume 71))

Abstract

The self-potential method consists in the passive measurement of the distribution of the electrical potential at the ground surface of the Earth and in boreholes. The purpose of this method is to map the electrical potential to reveal one or several polarization mechanisms at play in the ground. In some cases, the self-potential signals are monitored with a network of non-polarisable electrodes, which provides both a better signal-to-noise ratio and the possibility to discriminate between various sources. The two main contributions to the self-potential signals are (1) the streaming potential or hydroelectric coupling (Fournier, 1989; Birch, 1993, 1998; Aubert and Yéné Atangana, 1996; Revil and Leroy, 2001) and (2) electro-chemical processes (membrane or diffusion potentials) associated with gradients of the chemical potentials of ionic species in the pore water (e.g., Sen, 1991; Naudet et al., 2003, 2004; Revil and Leroy, 2005). In the former case, the self-potential signal correponds to the electrical field associated with the flow of ground water in a porous medium and more precisely with the drag of the excess of charge generally contained in the so-called diffuse layer in the vicinity of the mineral surface (e.g. Revil and Leroy, 2004). If the chemical potential concerns the electrons (redox potential), the transfer of electrons through an electronic conductor also generates self-potential signals in the surrounding conductive medium as discussed by Sato and Mooney (1960).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, P.M., J.F. Thovert, C. Jacquin, P. Morat, and J.L. Le Mouël, 1997. Electrical signals induced by the atmospheric pressure variations in unsaturated media. Comptes Rendus De l’Académie Des Sciences Série II, Fascicule a, Sciences de la Terre et des Planètes, Vol. 324, pp. 711–718.

    Google Scholar 

  • Albouy, Y., S. Cabrera, C. Camerlynck, M. Dietrich, C. Doussan, N. Florsch, S. Garambois, S. Hautot, L. Jouniaux, E. Marmet, M. Menviell, H. Perroud, D. Rousset, L. Szarka, and P. Tarits, 2000. PNRH Géophysique – Hydrologie 99: Un premier compte rendu des expérimentations menées sur le site INRA d’Avignon, Colloque PNRH 2000, Toulouse, May 16–17, 19–143.

    Google Scholar 

  • Atangana, J.Q.Y., B. Nyeck, D. Bitom, and H. Robain, 2003. Self-potential anomalies in the lateritic cover of the Nsimi watershed in southern Cameroon: Origin and influence of electrical and granulometric parameters. J. Appl. Geophys., 54, 85–96.

    Article  Google Scholar 

  • Aubert, M., and Q.Y. Atangana, 1996. Self-potential method in hydrogeological exploration of volcanic areas. Ground Water, 34, 1010–1016.

    Article  Google Scholar 

  • Aubert, M., I.N. Dana, and A. Gourgaud, 2000. Internal structure of the Merapi summit from self-potential measurements. J. Volcanol. Geotherm. Res., 100, 337–343.

    Article  Google Scholar 

  • Béhaegel, M., J.-C. Gourry, and J.-F. Girard, 2004. Geophysical measurements on an ancient coking plant contaminated by tar, GU 1st General Assembly, Nice, 25–30 April 2004, Poster HS17-1FR2P-0110 (session EGU04-A-01783).

    Google Scholar 

  • Bigalke, J., and E.W. Grabner, 1997. The geobattery model: A contribution to large scale electrochemistry, Electrochem. Acta, 42, 3443–3452.

    Article  Google Scholar 

  • Birch, F.S., 1993. Testing Fournier’s method for finding water table from self-potential, Ground Water, 31, 50–56.

    Article  Google Scholar 

  • Birch, F.S., 1998. Imaging the water table by filtering self-potential profiles, Ground Water, 36, 779–782.

    Article  Google Scholar 

  • Bogoslovsky, V.A., and A.A. Ogilvy, 1977. Geophysical methods in the investigations of landslides, Geophysics, 42, 562–571.

    Article  Google Scholar 

  • Bogoslovsky, V.A., and A.A. Ogilvy, 1973. Deformation of natural electric fields near drainage structures, Geophys. Prospect., 21, 716–723.

    Article  Google Scholar 

  • Bruno, F., and F. Marillier, 2000. Test of high-resolution seismic reflection and other geophysical techniques on the Boup Landslide in the Swiss Alps, Surv. Geophys., 21, 333–348.

    Article  Google Scholar 

  • Buselli, G., and K. Lu, 2001. Groundwater contamination monitoring with multichannel electrical and electromagnetic methods, J. Appl. Geophys., 48, 11–23.

    Article  Google Scholar 

  • Butler, J.J., and X. Zhan, 2004. Hydraulic tests in highly permeable aquifers, Water Resour. Res., 40, W12402, doi: 10.1029/2003WR002998.

    Article  Google Scholar 

  • Cavalcante, F., S. Fiore, G. Piccareta, and F. Tateo, 2003. Geochemical and mineralogical approaches to assessing provenance and deposition of shales: A case study. Clay Miner., 38, 383–397.

    Article  Google Scholar 

  • Chène, G., C. Brunjail, N. Aouaissia-Abdallah, and G. Bastian, 1995. Détection de flux hydriques dans les géomatériaux par mesure de polarisation spontanée, in Proceedings Journées détude sur les milieux poreux et transferts dans les structures du génie civil et de l’habitat, janvier 1995, Société Française des Thermiciens, Vol. 1–9.

    Google Scholar 

  • Colangelo, G., J. Heinicke, U. Koch, V. Lapenna, G. Martinelli, and L. Telesca, 2005. Results of gas flux records in the seismically active area of Val d’Agri (Southern Italy). Annals Geophys., 48 (1), 55–63.

    Google Scholar 

  • Corwin, R.F., 1990. The self-potential method for environmental and engineering applications, in Geotechnical and environmental Geophysics, vol.1: Reviews and tutorial, edited by S.H. Ward, Society of Exploration Geophysics, Tucson, pp. 127–145.

    Google Scholar 

  • Corwin, R.F., and D.B. Hoover, 1979. The self-potential method in geothermal exploration, Geophysics, 44 (2), 226–245.

    Article  Google Scholar 

  • Cruden, D.M., and D.J. Varnes, 1996. Landslide types and processes and mitigation, in Landslides – investigation and mitigation, edited by A.K. Turner and R.L. Schuster, Transportation Research Board, Spec. Rep. 247, National Academy of Sciences, Washington, DC, pp. 36–75.

    Google Scholar 

  • Darnet, M., G. Marquis, and P. Sailhac, 2003. Estimating aquifer hydraulic properties from the inversion of surface streaming potential anomalies, Geophys. Res. Lett., 30, 1679, doi: 10.1029/2003GL017631.

    Article  Google Scholar 

  • Darnet, M., and G. Marquis, 2004. Modelling streaming potential (SP) signals induced by water movement in the vadose zone, J. Hydrol., 285, 114–124.

    Article  Google Scholar 

  • Doussan, C., L. Jouniaux, and J.L. Thony, 2002. Variations of self-potential and unsaturated water flow with time in sandy loam and clay loam soils. J. Hydrol., 267, 173–185.

    Article  Google Scholar 

  • Ernstson, K., and U. Scherer, 1986. Self-potential variations wirh time and their relation to hydrogeological and meteorological parameters, Geophysics, 51, 1967–1977.

    Article  Google Scholar 

  • Fitterman, D.V., 1978. Electrokinetic and magnetic anomalies associated with dilatant regions in a layered earth, J. Geophys. Res., 83, 5923–5932.

    Google Scholar 

  • Fitterman, D.V., 1979. Calculations of self-potential anomalies near vertical contacts, Geophysics, 44, 195–205.

    Article  Google Scholar 

  • Fournier, C., 1989. Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: Case history of the Chaîne des Puys (Puy-de-Dôrne, France), Geophys. Prospecting, 37, 647–668.

    Article  Google Scholar 

  • Fox, R.W., 1830. On the electromagnetic properties of metalliferous veins in the mines of Cornwall, Philosoph. Transact. Royal Soc., 130, 399.

    Google Scholar 

  • Frischknecht, F.C., L. Muth, R. Grette, T. Buckley, and B. Kornegay, 1983. Geophysical methods for locating abandoned wells, U.S. Geol. Surv. Open-File Report 83-702.

    Google Scholar 

  • Gallipoli, M., V. Lapenna, P. Lorenzo, M. Mucciarelli, A. Perrone, S. Piscitelli, and F. Sdao, 2000. Comparison of geological and geophysical prospecting techniques in the study of a landslide in Southern Italy. Eur. J. Environ. Eng. Geophys., 4, 117–128.

    Google Scholar 

  • Gex, P., 1980. Phénomènes d’électrofiltration liés à quelques sites de barrages, Bull. Soc. Vaud Sci. Nat., 357 (75), 39–50.

    Google Scholar 

  • Gibert, D., and M. Pessel, 2001. Identification of sources of potential fields with the continuous wavelet transform: Application to self-potential profiles, Geophys. Res. Lett., 28, 1863–1866.

    Article  Google Scholar 

  • Gorelik, A.M., and I.P. Nesterenko, 1956. Metod potentsialov elektrofil’tratsii pri opredelenii radiusa depressionnoi voronki v khode otkachki iz skvazhini. (Method of electro-filtration potential in the determination of radius of the depression cone during a pumping test from borehole, in russian), Izvestia Akad. Nauk SSSR, Ser. Geofiz. (Solid Earth Physics), 11, 1361–1363.

    Google Scholar 

  • Guichet, X., L. Jouniaux, and J.-P. Pozzi, 2003. Streaming potential of a sand column in partial saturation conditions, J. Geophys. Res., 108, 2141, doi: 10.1029/2001JB001517.

    Article  Google Scholar 

  • Hack, R., Geophysics for slope stability, 2000. Surv. Geophys., 21, 423–448.

    Article  Google Scholar 

  • Hämmann, M., H.R. Maurer, A.G. Green, and H. Horstmeyer, 1997. Self-potential image reconstruction: Capabilities and limitations, J. Environ. Eng. Geophys., 2, 21–35.

    Article  Google Scholar 

  • Hauk, O., A. Keil, T. Elbert, and M.M. Müller, 2002. Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG, J. Neurosci. Methods, 113, 111–122.

    Article  Google Scholar 

  • Hutchinson, D.J., R. Harrap, M. Diederichs, M. Villeneuve, and N. Kjelland, 2003. Geotechnical rule development for ground instability assessment using intelligent GIS and networked monitoring sensors. 3rd Canadian Conference on Geotechnique and Natural Hazards. Edmonton, Alberta, Canada, June 9 and 10.

    Google Scholar 

  • Iuliano, T., P. Mauriello, and D. Patella, 2002. Looking inside Mount Vesuvius by potential fields integrated probability tomographies, J. Volcanology Geothermal Res., 113, 363–378.

    Article  Google Scholar 

  • Keller, G.V., and F.C. Frischknect, 1966. Electrical methods in Geophysical Prospecting, Pergamon, Oxford, p. 517.

    Google Scholar 

  • Lachassagne, P., and M. Aubert, 1989. Etude des phénomènes de polarisation spontanée (PS) enregistrées dans un sol lors de transferts hydriques verticaux, Hydrogéologie, 1, 7–17.

    Google Scholar 

  • Lapenna, V., P. Lorenzo, A. Perrone, S. Piscitelli, E. Rizzo, and F. Sdao, 2003. High-resolution geoelectrical tomographies in the study of the Giarrossa landslide (Potenza, Basilicata). Bull. Eng. Geol. Environ., 62, 259–268.

    Article  Google Scholar 

  • Lapenna, V., P. Lorenzo, A. Perrone, S. Piscitelli, E. Rizzo, and F. Sdao, 2005. 2D electrical resistivity imaging of some complex landslides in the Lucanian Apennine chain, Southern Italy, geophysics, 70 (3), B11–B18.

    Google Scholar 

  • Loke, M.H., and R.D. Barker, 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect., 44, 131–152.

    Article  Google Scholar 

  • Mauritsch, H.J., W. Seiberl, R. Arndt, A. Romer, K. Schneiderbauer, and G.P. Sendlhofer, 2000. Geophysical investigations of large landslides in the Carnic region of southern Austria. Eng. Geol., 56, 373–388.

    Article  Google Scholar 

  • McCann, D.M., and A. Forster, 1990. Reconnaissance geophysical methods in landslide investigations, Eng. Geol., 29, 59–78.

    Article  Google Scholar 

  • Moore, J.R., S.D. Glaser, H.F. Morrison, and G.M. Hoversten, 2004. The streaming potential of liquid carbon dioxide in Berea sandstone, Geophys. Res. Lett., 31, L17610, doi: 10.1029/2004GL020774.

    Article  Google Scholar 

  • Moore J.R., and S.D. Glaser, 2004. Laboratory observation of an advancing boiling front in a porous medium and correlation to self-potential measurements, in Proceedings 29th Workshop on Geothermal reservoir engineering, Stanford University, Stanford, CA, January 26–28.

    Google Scholar 

  • Morat P., and J.M. Le Mouël, 1992. Signaux électriques engendrés par des varaitions de contrainte dans des roches poreuses non saturées, Compt. Rend. Acad. Sci. Sér., 2, 315, 955–963.

    Google Scholar 

  • Morat P, J.L. Le Mouël, and A. Granier, 1994. Electrical Potential on a Tree – a Measurement of the Sap Flow, Compt. Rend. Acad. Sci. Sér. III – Sci. Vie, Life Sci., 317, 98–101.

    Google Scholar 

  • Morgan, F.D., E.R. Williams, and T.R. Madden, 1989. Streaming potentials properties of Westerly granite with applications, J. Geophys. Res., 94, 12449–12461.

    Article  Google Scholar 

  • Murashko, A.M., B.K. Khasenevich, and P.I. Firsiuk, 1981. Vremennie recomendatsii po premeneniu geofisicheskikh metodov pri iziskaniyakh dlia meliorativnogo stroitel’stva v usloviakh BSSR. (Recommendations for use of geophysical methods for investigations for amending construction in BSSR, in Russian), Belnii MVH, Minsk, p. 51.

    Google Scholar 

  • Naudet, V., A. Revil, E. Rizzo, J.-Y. Bottero, and P. Bégassat, 2004. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations, Hydrol. Earth Syst. Sci., 8 (1), 8–22.

    Article  Google Scholar 

  • Naudet, V., A. Revil, J.-Y. Bottero, and P. Bégassat, 2003. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater, Geophys. Res. Lett., 30 (21), 2091, doi: 10.1029/2003GL018096.

    Article  Google Scholar 

  • Nimmer R.E., and J.L. Osiensky, 2002. Direct current and self-potential monitoring of an evolving plume in partially saturated fractured rock. J. Hydrol., 267, 258–272.

    Article  Google Scholar 

  • Patella, D., 1997a. Introduction to gound surface self-potential tomography. Geophys. Prospect., 45, 653–681.

    Article  Google Scholar 

  • Patella, D., 1997b. Self-potential global tomography including topographic effects, Geophys. Prospect., 45, 843–863.

    Article  Google Scholar 

  • Perrier, F., and P. Morat, 2000. Characterization of electrical daily variations induced by capillary flow in the non-saturated zone. Pure Appl. Geophys., 157, 785–810.

    Article  Google Scholar 

  • Perrier, F., and S.R. Pant, 2005. Noise reduction in long-term self-potential monitoring with travelling electrode referencing. Pure Appl. Geophys., 162, 165–179.

    Article  Google Scholar 

  • Perrier, F.E., G. Petiau, G. Clerc, V. Bogorodsky, E. Erkul, L. Jouniaux, D. Lesmes, J. Macnae, J.M. Meunier, D. Morgan, D. Nascimento, G. Oettinger, G. Schwarz, H. Toh, M.J. Valiant, K. Vozoff, and O. Yazici-Cakin, 1997. A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments. J. Geomagn. Geoelectr., 49, 1677–1696.

    Google Scholar 

  • Perrone, A., A. Iannuzzi, V. Lapenna, P. Lorenzo, S. Piscitelli, E. Rizzo, and F. Sdao, 2004. High-resolution electrical imaging of the Varco d’Izzo earthflow (Southern Italy). J. Appl. Geophys., 56 (1), 17–29.

    Article  Google Scholar 

  • Perry, J.W., C.H. Corry, and T. Madden, 1996. Monitoring leakage from underground storage tanks (UST) using spontaneous polarization method, SEG (extended abstract).

    Google Scholar 

  • Pisarenko, D., P. Morat, and J.-L. Le Mouel, 1996. On a possible mechanism of sandstone alteration: Evidence from electric potential measurements, Comptes-Rendus De L’Académie Des Sciences Série Ii Fascicule a-Sciences De La Terre et des Planètes, Vol. 322, pp. 17–24.

    Google Scholar 

  • Poldini, E., 1938. Geophysical exploration by spontaneous polarization methods, Mining Mag., London, 59, 278–282, 347–352.

    Google Scholar 

  • Polemio, M., and F. Sdao, 1998. Heavy rainfalls and extensive landslides occurred in Basilicata, southern Italy, in 1976, in Proc. 8th Int. Cong. EEGS, Vancouver, Canada, pp. 1849–1855.

    Google Scholar 

  • Pride, S.R., 1994. Governing equations for the coupled electromagnetics and acoustics of porous media, Phys. Rev. B, 50, 15678–15696.

    Article  Google Scholar 

  • Revil, A., P. Leroy, and K. Titov, 2005. Characterization of transport properties of argillaceous sediments. Application to the Callovo-Oxfordian Argillite, J. Geophys. Res., 110, B06202, doi: 10.1029/2004JB003442.

    Article  Google Scholar 

  • Revil A., and A. Cerepi, 2004. Streaming potential in two-phase flow condition, Geophys. Res. Lett., 31(11), L11605, doi:1029/2004GL020140.

    Article  Google Scholar 

  • Revil, A., and P. Leroy, 2001. Hydroelectric coupling in a clayey material, Geophys. Res. Lett., 28 (8), 1643–1646.

    Article  Google Scholar 

  • Revil, A., and P. Leroy, 2004. Governing equations for ionic transport in porous shales, J. Geophys. Res., 109, B03208, doi : 10.1029/2003JB002755.

    Article  Google Scholar 

  • Revil, A., V. Naudet, and J.D. Meunier, 2004. The hydroelectric problem of porous rocks: Inversion of the water table from self-potential data, Geophys. J. Int., 159, 435–444.

    Article  Google Scholar 

  • Revil, A., V. Naudet, J. Nouzaret, and M. Pessel, 2003. Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications, Water Resour. Res., 39 (5), 1114, doi: 10.1029/2001WR000916.

    Article  Google Scholar 

  • Revil, A., D. Hermite, M. Voltz, R. Moussa, J.-G. Lacas, G. Bourrié, and F. Trolard, 2002. Self-potential signals assosiated with variations of the hydraulic head during an infiltration experiment, Geophys. Res. Lett., 29 (7), 1106, doi: 10.1029/2001GL014294.

    Article  Google Scholar 

  • Revil, A., P.A. Pezard, and P.W.J. Glower, 1999. Streaming potential in porous media: 1.Theory of the zeta potential. J. Geophys. Res., 104, 20021–20031.

    Article  Google Scholar 

  • Revil, A., H. Schwaeger, L.M. Cathles, and P.D. Manhardt, 1999. Streaming potential in porous media 2. Theory and application to geothermal systems, J. Geophys. Res., 104, 20033–20048.

    Article  Google Scholar 

  • Rizzo, E., B. Suski, A. Revil, S. Straface, and S. Troisi, 2004. Self-potential signals associated with pumping-test experiments, J. Geophys. Res., 109, B10203, doi: 10.1029/2004JB003049.

    Article  Google Scholar 

  • Sailhac, P., M. Darnet, and G. Marquis, 2004. Electrical streaming potential measured at the ground surface: Forward modelling and inversion issues for monitoring infiltration and characterizing the vadose zone, Vadose Zone J., 3, 1200–1206.

    Article  Google Scholar 

  • Sato, M., and H.M. Mooney, 1960. The electrochemical mechanism of sulfide self-potentials, Geophysics, 25 (1), 226–249.

    Article  Google Scholar 

  • Schmutz, M., Y. Albouy, R. Guerin, O. Maquaire, J. Vassal, J.J. Schott, and M. Descloitres, 2000. Joint electrical and Time domain electromagnetism (TdEM) data inversion applied to the Super Sauze earthflow (France), Surv. Geophys., 21, 371–390.

    Article  Google Scholar 

  • Schlumberger, C., M. Schlumberger, and E.G. Leonardon, 1934. A new contribution to subsurface studies by means of electrical measurements in drill holes, Trans. AIME, 110.

    Google Scholar 

  • Sekihara, K. et al., 1997. Noise covariance incorporated MEG-MUSIC algorithm: A method for multiple-dipole estimation tolerant of the influence of background brain activity, IEEE Trans. Biomed. Eng., 44, 839–849.

    Article  Google Scholar 

  • Semenov, A.S., 1980. Elektrorazvedka metodom estestvennogo elektricheskogo polia (Electrical proself-potential ecting with the natural electric field method, 2nd edn., In Russian), Nedra, Leningrad, p. 445.

    Google Scholar 

  • Sen, P.N., 1991. Correspondence between membrane potential and conductivity, Geophysics, 56 (4), 461–471.

    Article  Google Scholar 

  • Sharma, P. S., 1997. Enviromental and Engineering Geophysics, Cambridge University Press, Cambridge, MA.

    Google Scholar 

  • Sill, W., 1983. Self-potential modeling from primary flows, Geophysics, 48, 76–86.

    Article  Google Scholar 

  • Sprunt, E.S., T.B. Mercer, and N.F. Djabbarah, 1994. Streaming potential from multiphase flow. Geophysics, 59, 707–711.

    Article  Google Scholar 

  • Steeples, D.W., 2001. Engineering and environmental geophysics at the millennium, Geophysics, 66, 31–35.

    Article  Google Scholar 

  • Stoll, J., J. Bigalke, and E.W. Grabner, 1995. Electrochemical modelling of self-potential anomalies, Sur. Geophys., 16, 107–120.

    Article  Google Scholar 

  • Thony, J.L., P. Morat, G. Vachaud, and J.L. Le Mouël, 1997. Field characterization of the relationship between electrical potential gradients and soil water flux. Comptes Rendus De L’Académie Des Sciences Série II, Fascicule a, Sciences de la Terre et des Planètes, Vol. 325, pp. 317–321.

    Google Scholar 

  • Timm, F., and P. Möller, 2001. The relation between electric and redox potential: An evidence from laboratory to field experiments, J. Geochem. Explor., 72, 115–127.

    Article  Google Scholar 

  • Titov, K., A. Revil, P. Konasovsky, S. Straface, and S. Troisi, 2005. Numerical modeling of self-potential signals associated with a pumping test experiment, Geophys. J. Int., 162, 641–650.

    Article  Google Scholar 

  • Titov, K., Y. Ilyin, P. Konosavski, and A. Levitski, 2002. Electrokinetic self-potential ontaneous polarization in porous media: petrophysics and numerical modelling, J. Hydrol., 267, 207–216.

    Article  Google Scholar 

  • Vachaud, G., C. Dancette, M. Sonko, and J.L. Thony, 1978. Méthodes de caractérisation hydriodynamique in situ d’un sol non-saturé. Application à deux types de sols du Sénégal en vue de la détermination du bilan hydrique. Ann. Agron., 29, 1–36.

    Google Scholar 

  • Vichabian, Y., and F.D. Morgan, 2002. Self potentials in cave detection, The Leading Edge, September, pp. 866–871.

    Google Scholar 

  • Vichabian, Y., P. Reppert, and F.D. Morgan, 1999. Self-Potential Mapping of Contaminants. In Proceedings of the symposium on the application of Geophysics to Engineering and Environmental Problems, pp. 14–18.

    Google Scholar 

  • Weigel, M., 1989. Self-potential surveys on waste dumps, in Theory and Practice in Detection of subsurface Flow Phenomena, Lecture Notes in Earth Sciences, vol. 27, G.-P. Merkler et al. (Eds.), Detection of Subsurface Flow Phenomena, Springer, Heidelberg, Germany, pp. 109–120.

    Google Scholar 

  • Xu, X.L., B. Xu, and B. He, 2003. An alternative subspace approach to EEG dipole source localization, Phys. Med. Biol., 49, 327–343.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Revil, A., Titov, K., Doussan, C., Lapenna, V. (2006). APPLICATIONS OF THE SELF-POTENTIAL METHOD TO HYDROLOGICAL PROBLEMS. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K. (eds) Applied Hydrogeophysics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4912-5_9

Download citation

Publish with us

Policies and ethics